Previous |  Up |  Next

Article

Title: Commutativity of rings with constraints involving a subset (English)
Author: Khan, Moharram A.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 53
Issue: 3
Year: 2003
Pages: 545-559
Summary lang: English
.
Category: math
.
Summary: Suppose that $R$ is an associative ring with identity $1$, $J(R)$ the Jacobson radical of $R$, and $N(R)$ the set of nilpotent elements of $R$. Let $m \ge 1$ be a fixed positive integer and $R$ an $m$-torsion-free ring with identity $1$. The main result of the present paper asserts that $R$ is commutative if $R$ satisfies both the conditions (i) $[x^m,y^m] = 0$ for all $x,y \in R \setminus J(R)$ and (ii) $[(xy)^m + y^mx^m, x] = 0 = [(yx)^m + x^my^m, x]$, for all $x,y \in R \setminus J(R)$. This result is also valid if (i) and (ii) are replaced by (i)$^{\prime }$ $[x^m,y^m] = 0$ for all $x,y \in R \setminus N(R)$ and (ii)$^{\prime }$ $[(xy)^m + y^m x^m, x] = 0 = [(yx)^m + x^m y^m, x]$ for all $x,y \in R\backslash N(R) $. Other similar commutativity theorems are also discussed. (English)
Keyword: commutativity theorems
Keyword: Jacobson radicals
Keyword: nilpotent elements
Keyword: periodic rings
Keyword: torsion-free rings
MSC: 16R50
MSC: 16U70
MSC: 16U80
MSC: 16U99
idZBL: Zbl 1080.16508
idMR: MR2000052
.
Date available: 2009-09-24T11:04:20Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127822
.
Reference: [1] H. A. S.  Abujabal, H. E. Bell, M. S. Khan and M. A. Khan: Commutativity of semiprime rings with power constraints.Studia Sci. Math. Hungar. 30 (1995), 183–187. MR 1353595
Reference: [2] H.  Abu-Khuzam: A commutativity theorem for periodic rings.Math. Japon. 32 (1987), 1–3. Zbl 0609.16020, MR 0886192
Reference: [3] H.  Abu-Khuzam and A.  Yaqub: Commutativity of rings satisfying some polynomial constraints.Acta Math. Hungar. 67 (1995), 207–217. MR 1315805, 10.1007/BF01874332
Reference: [4] H.  Abu-Khuzam, H. E.  Bell and A.  Yaqub: Commutativity of rings satisfying certain polynomial identities.Bull. Austral. Math. Soc. 44 (1991), 63–69. MR 1120394, 10.1017/S0004972700029464
Reference: [5] H. E.  Bell: Some commutativity results for periodic rings.Acta Math. Acad. Sci. Hungar. 28 (1976), 279–283. Zbl 0335.16035, MR 0419535, 10.1007/BF01896791
Reference: [6] H. E.  Bell: A commutativity study for periodic rings.Pacific J.  Math. 70 (1977), 29–36. Zbl 0336.16034, MR 0480637, 10.2140/pjm.1977.70.29
Reference: [7] H. E.  Bell: On rings with commutativity powers.Math. Japon. 24 (1979), 473–478. MR 0557482
Reference: [8] I. N.  Herstein: Power maps in rings.Michigan Math.  J. 8 (1961), 29–32. Zbl 0096.25701, MR 0118741, 10.1307/mmj/1028998511
Reference: [9] I. N.  Herstein: A commutativity theorem.J.  Algebra 38 (1976), 112–118. Zbl 0323.16014, MR 0396687, 10.1016/0021-8693(76)90248-9
Reference: [10] Y.  Hirano, M.  Hongon and H.  Tominaga: Commutativity theorems for certain rings.Math.  J. Okayama Univ. 22 (1980), 65–72. MR 0573674
Reference: [11] M.  Hongan and H.  Tominaga: Some commutativity theorems for semiprime rings.Hokkaido Math.  J. 10 (1981), 271–277. MR 0662304
Reference: [12] N.  Jacobson: Structure of Rings.Amer. Math. Soc. Colloq. Publ., Providence, 1964.
Reference: [13] T. P.  Kezlan: A note on commutativity of semiprime PI-rings.Math. Japon 27 (1982), 267–268. Zbl 0481.16013, MR 0655230
Reference: [14] W. K.  Nicholson and A.  Yaqub: A commutativity theorem for rings and groups.Canad. Math. Bull. 22 (1979), 419–423. MR 0563755, 10.4153/CMB-1979-055-9
.

Files

Files Size Format View
CzechMathJ_53-2003-3_5.pdf 338.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo