Title:
|
Commutativity of rings with constraints involving a subset (English) |
Author:
|
Khan, Moharram A. |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
53 |
Issue:
|
3 |
Year:
|
2003 |
Pages:
|
545-559 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Suppose that $R$ is an associative ring with identity $1$, $J(R)$ the Jacobson radical of $R$, and $N(R)$ the set of nilpotent elements of $R$. Let $m \ge 1$ be a fixed positive integer and $R$ an $m$-torsion-free ring with identity $1$. The main result of the present paper asserts that $R$ is commutative if $R$ satisfies both the conditions (i) $[x^m,y^m] = 0$ for all $x,y \in R \setminus J(R)$ and (ii) $[(xy)^m + y^mx^m, x] = 0 = [(yx)^m + x^my^m, x]$, for all $x,y \in R \setminus J(R)$. This result is also valid if (i) and (ii) are replaced by (i)$^{\prime }$ $[x^m,y^m] = 0$ for all $x,y \in R \setminus N(R)$ and (ii)$^{\prime }$ $[(xy)^m + y^m x^m, x] = 0 = [(yx)^m + x^m y^m, x]$ for all $x,y \in R\backslash N(R) $. Other similar commutativity theorems are also discussed. (English) |
Keyword:
|
commutativity theorems |
Keyword:
|
Jacobson radicals |
Keyword:
|
nilpotent elements |
Keyword:
|
periodic rings |
Keyword:
|
torsion-free rings |
MSC:
|
16R50 |
MSC:
|
16U70 |
MSC:
|
16U80 |
MSC:
|
16U99 |
idZBL:
|
Zbl 1080.16508 |
idMR:
|
MR2000052 |
. |
Date available:
|
2009-09-24T11:04:20Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127822 |
. |
Reference:
|
[1] H. A. S. Abujabal, H. E. Bell, M. S. Khan and M. A. Khan: Commutativity of semiprime rings with power constraints.Studia Sci. Math. Hungar. 30 (1995), 183–187. MR 1353595 |
Reference:
|
[2] H. Abu-Khuzam: A commutativity theorem for periodic rings.Math. Japon. 32 (1987), 1–3. Zbl 0609.16020, MR 0886192 |
Reference:
|
[3] H. Abu-Khuzam and A. Yaqub: Commutativity of rings satisfying some polynomial constraints.Acta Math. Hungar. 67 (1995), 207–217. MR 1315805, 10.1007/BF01874332 |
Reference:
|
[4] H. Abu-Khuzam, H. E. Bell and A. Yaqub: Commutativity of rings satisfying certain polynomial identities.Bull. Austral. Math. Soc. 44 (1991), 63–69. MR 1120394, 10.1017/S0004972700029464 |
Reference:
|
[5] H. E. Bell: Some commutativity results for periodic rings.Acta Math. Acad. Sci. Hungar. 28 (1976), 279–283. Zbl 0335.16035, MR 0419535, 10.1007/BF01896791 |
Reference:
|
[6] H. E. Bell: A commutativity study for periodic rings.Pacific J. Math. 70 (1977), 29–36. Zbl 0336.16034, MR 0480637, 10.2140/pjm.1977.70.29 |
Reference:
|
[7] H. E. Bell: On rings with commutativity powers.Math. Japon. 24 (1979), 473–478. MR 0557482 |
Reference:
|
[8] I. N. Herstein: Power maps in rings.Michigan Math. J. 8 (1961), 29–32. Zbl 0096.25701, MR 0118741, 10.1307/mmj/1028998511 |
Reference:
|
[9] I. N. Herstein: A commutativity theorem.J. Algebra 38 (1976), 112–118. Zbl 0323.16014, MR 0396687, 10.1016/0021-8693(76)90248-9 |
Reference:
|
[10] Y. Hirano, M. Hongon and H. Tominaga: Commutativity theorems for certain rings.Math. J. Okayama Univ. 22 (1980), 65–72. MR 0573674 |
Reference:
|
[11] M. Hongan and H. Tominaga: Some commutativity theorems for semiprime rings.Hokkaido Math. J. 10 (1981), 271–277. MR 0662304 |
Reference:
|
[12] N. Jacobson: Structure of Rings.Amer. Math. Soc. Colloq. Publ., Providence, 1964. |
Reference:
|
[13] T. P. Kezlan: A note on commutativity of semiprime PI-rings.Math. Japon 27 (1982), 267–268. Zbl 0481.16013, MR 0655230 |
Reference:
|
[14] W. K. Nicholson and A. Yaqub: A commutativity theorem for rings and groups.Canad. Math. Bull. 22 (1979), 419–423. MR 0563755, 10.4153/CMB-1979-055-9 |
. |