Previous |  Up |  Next

Article

Title: Matrix rings with summand intersection property (English)
Author: Karabacak, F.
Author: Tercan, A.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 53
Issue: 3
Year: 2003
Pages: 621-626
Summary lang: English
.
Category: math
.
Summary: A ring $R$ has right SIP (SSP) if the intersection (sum) of two direct summands of $R$ is also a direct summand. We show that the right SIP (SSP) is the Morita invariant property. We also prove that the trivial extension of $R$ by $M$ has SIP if and only if $R$ has SIP and $(1-e)Me=0$ for every idempotent $e$ in $R$. Moreover, we give necessary and sufficient conditions for the generalized upper triangular matrix rings to have SIP. (English)
Keyword: modules
Keyword: Summand Intersection Property
Keyword: Morita invariant
MSC: 16D10
MSC: 16D15
MSC: 16D70
MSC: 16S50
idZBL: Zbl 1080.16503
idMR: MR2000057
.
Date available: 2009-09-24T11:05:01Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127827
.
Reference: [1] F. W. Anderson and K. R. Fuller: Rings and Categories of Modules.Springer-Verlag, 1974. MR 0417223
Reference: [2] G. F.  Birkenmeier, J. Y.  Kim and J. K. Park: When is the CS condition hereditary.Comm. Algebra 27 (1999), 3875–3885. MR 1699593, 10.1080/00927879908826670
Reference: [3] J. L.  Garcia: Properties of direct summands of modules.Comm. Algebra 17 (1989), 73–92. Zbl 0659.16016, MR 0970864, 10.1080/00927878908823714
Reference: [4] K. R.  Goodearl: Ring Theory.Marcel Dekker, 1976. Zbl 0336.16001, MR 0429962
Reference: [5] J.  Hausen: Modules with the summand intersection property.Comm. Algebra 17 (1989), 135–148. Zbl 0667.16020, MR 0970868, 10.1080/00927878908823718
Reference: [6] I.  Kaplansky: Infinite Abelian Groups.University of Michigan Press, 1969. Zbl 0194.04402, MR 0233887
Reference: [7] G. V.  Wilson: Modules with the summand intersection property.Comm. Algebra 14 (1986), 21–38. Zbl 0592.13008, MR 0814137, 10.1080/00927878608823297
.

Files

Files Size Format View
CzechMathJ_53-2003-3_10.pdf 288.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo