Previous |  Up |  Next

Article

Title: Closed semistable operators and singular differential equations (English)
Author: Koliha, J. J.
Author: Tran, Trung Dinh
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 53
Issue: 3
Year: 2003
Pages: 605-620
Summary lang: English
.
Category: math
.
Summary: We study a class of closed linear operators on a Banach space whose nonzero spectrum lies in the open left half plane, and for which $0$ is at most a simple pole of the operator resolvent. Our spectral theory based methods enable us to give a simple proof of the characterization of $C_0$-semigroups of bounded linear operators with asynchronous exponential growth, and recover results of Thieme, Webb and van Neerven. The results are applied to the study of the asymptotic behavior of the solutions to a singularly perturbed differential equation in a Banach space. (English)
Keyword: closed linear operator
Keyword: $C_0$-semigroup
Keyword: infinitesimal generator
Keyword: semistable operator
Keyword: singular differential equation
MSC: 34G10
MSC: 47A10
MSC: 47A60
MSC: 47D06
idZBL: Zbl 1080.47500
idMR: MR2000056
.
Date available: 2009-09-24T11:04:54Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127826
.
Reference: [1] M. D.  Blake: A spectral bound for asymptotically norm-continuous semigroups.J. Operator Theory 45 (2001), 111–130. Zbl 0994.47039, MR 1823064
Reference: [2] S. L.  Campbell: Singular Systems of Differential Equations.Pitman, San Francisco, 1980. Zbl 0419.34007
Reference: [3] S. R.  Caradus, W. E.  Pfaffenberger and B.  Yood: Calkin Algebras and Algebras of Operators on Banach Spaces. Lect. Notes Pure Appl. Math. Vol. 9.Dekker, New York, 1974. MR 0415345
Reference: [4] Ph.  Clément, H. J. A. M.  Heijmans, S.  Angenent, C. J.  van Duijn and B.  de  Pagter: One-Parameter Semigroups.North-Holland, Amsterdam, 1987. MR 0915552
Reference: [5] G.  Greiner, J. A. P.  Heesterbeek and J. A. J.  Metz: A singular perturbation theorem for evolution equations and time-scale arguments for structured population models.Canad. Appl. Math. Quart. 2 (1994), 435–459. MR 1326900
Reference: [6] T. H.  Gronwall: Note on the derivatives with respect to a parameter of solutions of a system of differential equations.Ann. of Math. 20 (1919), 292–296. MR 1502565, 10.2307/1967124
Reference: [7] T.  Kato: Perturbation Theory for Linear Operators, 2nd ed.Springer, Berlin, 1980. MR 0407617
Reference: [8] J. J.  Koliha: Isolated spectral points.Proc. Amer. Math. Soc. 124 (1996), 3417–3424. Zbl 0864.46028, MR 1342031, 10.1090/S0002-9939-96-03449-1
Reference: [9] J. J.  Koliha and Trung Dinh Tran: Semistable operators and singularly perturbed differential equations.J.  Math. Anal. Appl. 231 (1999), 446–458. MR 1669179, 10.1006/jmaa.1998.6235
Reference: [10] J.  Martinez and J. M.  Mazon: $C_0$-semigroups s norm continuous at infinity.Semigroup Forum 52 (1996), 213–224. MR 1371804, 10.1007/BF02574097
Reference: [11] R.  Nagel and J.  Poland: The critical spectrum of a strongly continuous semigroup.Adv. Math. 152 (2000), 120–133. MR 1762122, 10.1006/aima.1998.1893
Reference: [12] J.  van Neerven: The Asymptotic Behaviour of Semigroups of Linear Operators.Birkhäuser Verlag, Basel, 1996. Zbl 0905.47001, MR 1409370
Reference: [13] A.  Pazy: Semigroups of Linear Operators and Applications to Partial Differential Equations.Springer, New York. Zbl 0516.47023, MR 0710486
Reference: [14] J.  Prüss: Equilibrium solutions of age-specific population dynamics of several species.J.  Math. Biol. 11 (1981), 65–84. MR 0617881, 10.1007/BF00275825
Reference: [15] A. E.  Taylor and D. C.  Lay: Introduction to Functional Analysis, 2nd ed.Wiley, New York, 1980. MR 0564653
Reference: [16] H. R.  Thieme: Balanced exponential growth of operator semigroups.J.  Math. Anal. Appl. 223, 30–49. Zbl 0943.47032, MR 1627297, 10.1006/jmaa.1998.5952
Reference: [17] G. F.  Webb: Theory of Nonlinear Age-dependent Population Dynamics.Marcel Dekker, New York, 1985. Zbl 0555.92014, MR 0772205
Reference: [18] G. F.  Webb: An operator theoretic formulation of asynchronous exponential growth.Trans. Amer. Math. Soc. 303 (1987), 751–763. Zbl 0654.47021, MR 0902796, 10.1090/S0002-9947-1987-0902796-7
.

Files

Files Size Format View
CzechMathJ_53-2003-3_9.pdf 380.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo