Title:
|
A completion of $\mathbb{Z}$ is a field (English) |
Author:
|
Marcos, J. E. |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
53 |
Issue:
|
3 |
Year:
|
2003 |
Pages:
|
689-706 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We define various ring sequential convergences on $\mathbb{Z}$ and $\mathbb{Q}$. We describe their properties and properties of their convergence completions. In particular, we define a convergence $\mathbb{L}_1$ on $\mathbb{Z}$ by means of a nonprincipal ultrafilter on the positive prime numbers such that the underlying set of the completion is the ultraproduct of the prime finite fields $\mathbb{Z}/(p)$. Further, we show that $(\mathbb{Z}, \mathbb{L}^\ast _1)$ is sequentially precompact but fails to be strongly sequentially precompact; this solves a problem posed by D. Dikranjan. (English) |
Keyword:
|
sequential convergence |
Keyword:
|
convergence ring |
Keyword:
|
completion of a convergence ring |
MSC:
|
13J10 |
MSC:
|
13J99 |
MSC:
|
54A20 |
MSC:
|
54H13 |
idZBL:
|
Zbl 1080.54500 |
idMR:
|
MR2000063 |
. |
Date available:
|
2009-09-24T11:05:46Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127833 |
. |
Reference:
|
[1] V. I. Arnautov, S. T. Glavatsky and A. V. Mikhalev: Introduction to the Theory of Topological Rings and Modules.Marcel Dekker, New York, 1996. MR 1368852 |
Reference:
|
[2] J. Borsík and R. Frič: Pointwise convergence fails to be strict.Czechoslovak Math. J. 48(123) (1998), 313–320. MR 1624327, 10.1023/A:1022841621251 |
Reference:
|
[3] C. Chang and H. J. Keisler: Model Theory, Third Edition.North-Holland, Amsterdam, 1990. MR 1059055 |
Reference:
|
[4] D. Dikranjan: Convergence groups: sequential compactness and generalizations. In: Eleventh International Conference on Topology, Trieste 1993.Rend. Istit. Mat. Univ. Trieste 25 (1993), 141–173. MR 1346320 |
Reference:
|
[5] R. Frič: Rational with exotic convergences.Math. Slovaca 39 (1989), 141–147. MR 1018255 |
Reference:
|
[6] R. Frič: On ring convergences.Riv. Mat. Pura Appl. 11 (1992), 125–138. MR 1183444 |
Reference:
|
[7] R. Frič: Convergence and numbers.Topology Appl. 70 (1996), 139–146. MR 1397072, 10.1016/0166-8641(95)00091-7 |
Reference:
|
[8] R. Frič and J. Gerlits: On the sequential order.Math. Slovaca 42 (1992), 505–512. MR 1195044 |
Reference:
|
[9] R. Frič and V. Koutník: Completions for subcategories of convergence rings.In: Categorical Topology and its Relations to Modern Analysis, Algebra and Combinatorics World Scientific Publishing Co., Singapore, 1989, pp. 195–207. MR 1047901 |
Reference:
|
[10] R. Frič and V. Koutník: Sequential convergence spaces: iteration, extension, completion, enlargement.In: Recent Progress in General Topology, M. Hušek (ed.), Elsevier, Amsterdam, 1992, pp. 201–213. MR 1229126 |
Reference:
|
[11] R. Frič and F. Zanolin: Coarse sequential convergence in groups, etc.Czechoslovak Math. J. 40 (115) (1990), 459–467. MR 1065025 |
Reference:
|
[12] R. Frič and F. Zanolin: Strict completions of $L^\ast _0$-groups.Czechoslovak Math. J. 42 (117) (1992), 589–598. MR 1182190 |
Reference:
|
[13] C. Jensen and H. Lenzing: Model Theoretic Algebra with Particular Emphasis on Fields, Rings, Modules.Gordon and Breach Science Publishers, 1989. MR 1057608 |
Reference:
|
[14] K. Kuratowski: Topology, Vol. I.Academic Press, New York, 1966. Zbl 0158.40901, MR 0217751 |
Reference:
|
[15] J. Novák: On convergence groups.Czechoslovak Math. J. 20 (95) (1970), 357–374. MR 0263973 |
Reference:
|
[16] N. Shell: Topological Fields and Near Valuations.Marcel Dekker, New York, 1990. Zbl 0702.12003, MR 1075419 |
Reference:
|
[17] P. Simon and F. Zanolin: A coarse convergence group need not be precompact.Czechoslovak Math. J. 37 (112) (1987), 480–486. MR 0904772 |
Reference:
|
[18] G. Tallini: Campi di Galois non standard.In: Conferenze del Seminario di Matematica dell’Universita di Bari 209 (1986), 1–17. MR 0853611 |
Reference:
|
[19] W. Wiesław: Topological Fields.Marcel Dekker, New York, 1988. MR 0957508 |
. |