Previous |  Up |  Next

Article

Title: Semiparallel isometric immersions of 3-dimensional semisymmetric Riemannian manifolds (English)
Author: Lumiste, Ülo
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 53
Issue: 3
Year: 2003
Pages: 707-734
Summary lang: English
.
Category: math
.
Summary: A Riemannian manifold is said to be semisymmetric if $R(X,Y)\cdot R=0$. A submanifold of Euclidean space which satisfies $\bar{R}(X,Y)\cdot h=0$ is called semiparallel. It is known that semiparallel submanifolds are intrinsically semisymmetric. But can every semisymmetric manifold be immersed isometrically as a semiparallel submanifold? This problem has been solved up to now only for the dimension 2, when the answer is affirmative for the positive Gaussian curvature. Among semisymmetric manifolds a special role is played by the foliated ones, which in the dimension 3 are divided by Kowalski into four classes: elliptic, hyperbolic, parabolic and planar. It is shown now that only the planar ones can be immersed isometrically into Euclidean spaces as 3-dimensional semiparallel submanifolds. This result is obtained by a complete classification of such submanifolds. (English)
Keyword: semisymmetric Riemannian manifolds
Keyword: semiparallel submanifolds
Keyword: isometric immersions
Keyword: planar foliated manifolds
MSC: 53B25
MSC: 53C25
MSC: 53C42
idZBL: Zbl 1080.53036
idMR: MR2000064
.
Date available: 2009-09-24T11:05:55Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127834
.
Reference: [1] E.  Boeckx: Foliated semi-symmetric spaces.Doctoral thesis, Katholieke Universiteit, Leuven, 1995. Zbl 0846.53031
Reference: [2] E.  Boeckx, O.  Kowalski and L.  Vanhecke: Riemannian Manifolds of Conullity Two.World Sc., Singapore, 1996. MR 1462887
Reference: [3] É.  Cartan: Leçons sur la géométrie des espaces de Riemann. 2nd editon.Gautier-Villars, Paris, 1946. MR 0020842
Reference: [4] J.  Deprez: Semi-parallel surfaces in Euclidean space.J.  Geom. 25 (1985), 192–200. Zbl 0582.53042, MR 0821680, 10.1007/BF01220480
Reference: [5] D.  Ferus: Symmetric submanifolds of Euclidean space.Math. Ann. 247 (1980), 81–93. Zbl 0446.53041, MR 0565140, 10.1007/BF01359868
Reference: [6] O.  Kowalski: An explicit classification of 3-dimensional Riemannian spaces satisfying $R(X,Y)\cdot R=0$.Czechoslovak Math.  J. 46(121) (1996), 427–474. Zbl 0879.53014, MR 1408298
Reference: [7] O.  Kowalski and S. Ž.  Nikčević: Contact homogeneity and envelopes of Riemannian metrics.Beitr. Algebra Geom. 39 (1998), 155–167. MR 1614436
Reference: [8] Ü.  Lumiste: Decomposition and classification theorems for semi-symmetric immersions. Eesti TA Toim. Füüs.Mat. Proc. Acad. Sci. Estonia Phys. Math. 36 (1987), 414–417. MR 0925980
Reference: [9] Ü.  Lumiste: Semi-symmetric submanifolds with maximal first normal space. Eesti TA Toim. Füüs.Mat. Proc. Acad. Sci. Estonia Phys. Math. 38 (1989), 453–457. MR 1046557
Reference: [10] Ü.  Lumiste: Semi-symmetric submanifold as the second order envelope of symmetric submanifolds. Eesti TA Toim. Füüs.Mat. Proc. Acad. Sci. Estonia Phys. Math. 39 (1990), 1–8. MR 1059755
Reference: [11] Ü.  Lumiste: Classification of three-dimensional semi-symmetric submanifolds in Euclidean spaces..Tartu Ül. Toimetised 899 (1990), 29–44. Zbl 0749.53012, MR 1082921
Reference: [12] Ü.  Lumiste: Semi-symmetric envelopes of some symmetric cylindrical submanifolds. Eesti TA Toim. Füüs.Mat. Proc. Acad. Sci. Estonia Phys. Math. 40 (1991), 245–257. MR 1163442
Reference: [13] Ü.  Lumiste: Second order envelopes of symmetric Segre submanifolds.Tartu Ül. Toimetised. 930 (1991), 15–26. MR 1151820
Reference: [14] Ü.  Lumiste: Isometric semiparallel immersions of two-dimensional Riemannian manifolds into pseudo-Euclidean spaces.New Developments in Differential Geometry, Budapest 1996, J.  Szenthe (ed.), Kluwer Ac. Publ., Dordrecht, 1999, pp. 243–264. Zbl 0947.53032, MR 1670514
Reference: [15] Ü.  Lumiste: Submanifolds with parallel fundamental form.In: Handbook of Differential Geometry, Vol.  I, F. Dillen, L.  Verstraelen (eds.), Elsevier Sc.  B.  V., Amsterdam, 2000, pp. 779–864. Zbl 0964.53002, MR 1736858
Reference: [16] Ü.  Lumiste and K.  Riives: Three-dimensional semi-symmetric submanifolds with axial, planar or spatial points in Euclidean spaces.Tartu Ülik. Toim. Acta et Comm. Univ. Tartuensis 899 (1990), 13–28. MR 1082920
Reference: [17] V.  Mirzoyan: $s$-semi-parallel submanifolds in spaces of constant curvature as the envelopes of $s$-parallel submanifolds.J. Contemp. Math. Analysis (Armenian Ac. Sci., Allerton Press, Inc.) 31 (1996), 37–48. Zbl 0890.53027, MR 1693824
Reference: [18] V.  Mirzoyan: On generalizations of Ü.  Lumiste theorem on semi-parallel submanifolds.J.  Contemp. Math. Analysis (Armenian Ac. Sci., Allerton Press, Inc.) 33 (1998), 48–58. MR 1714535
Reference: [19] K.  Nomizu: On hypersurfaces satisfying a certain condition on the curvature tensor.Tôhoku Math. J.  20 (1968), 46–59. Zbl 0174.53301, MR 0226549, 10.2748/tmj/1178243217
Reference: [20] K.  Sekigawa: On some hypersurfaces satisfying $R(X,Y)\cdot R=0$.Tensor 25 (1972), 133–136. MR 0331288
Reference: [21] P. A.  Shirokov: Selected Works on Geometry.Izd. Kazanskogo Univ., Kazan, 1966. (Russian) MR 0221390
Reference: [22] N. S.  Sinjukov: On geodesic maps of Riemannian spaces.Trudy III Vsesojuzn. Matem. S’ezda (Proc. III All-Union Math. Congr.), I, Izd. AN SSSR, Moskva, 1956, pp. 167–168. (Russian)
Reference: [23] N. S.  Sinjukov: Geodesic maps of Riemannian spaces.Publ. House “Nauka”, Moskva, 1979. (Russian) MR 0552022
Reference: [24] W.  Strübing: Symmetric submanifolds of Riemannian manifolds.Math. Ann. 245 (1979), 37–44. 10.1007/BF01420428
Reference: [25] Z. I.  Szabó: Structure theorems on Riemannian spaces satisfying $R(X,Y)\cdot R=0$, I.  The local version.J.  Differential Geom. 17 (1982), 531–582. MR 0683165, 10.4310/jdg/1214437486
Reference: [26] H.  Takagi: An example of Riemannian manifolds satisfying $R(X,Y)\cdot R=0$ but not $\nabla R=0$.Tôhoku Math.  J. 24 (1972), 105–108. Zbl 0237.53041, MR 0319109, 10.2748/tmj/1178241595
Reference: [27] M.  Takeuchi: Parallel submanifolds of space forms.Manifolds and Lie Groups. Papers in Honour of Y.  Matsushima, Birkhäuser, Basel, 1981, pp. 429–447. Zbl 0481.53047, MR 0642871
Reference: [28] J.  Vilms: Submanifolds of Euclidean space with parallel second fundamental form.Proc. Amer. Math. Soc. 32 (1972), 263–267. Zbl 0229.53045, MR 0290298
.

Files

Files Size Format View
CzechMathJ_53-2003-3_17.pdf 422.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo