Previous |  Up |  Next

Article

Title: Oscillation and nonoscillation of second order neutral delay difference equations (English)
Author: Thandapani, E.
Author: Mahalingam, K.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 53
Issue: 4
Year: 2003
Pages: 935-947
Summary lang: English
.
Category: math
.
Summary: Some new oscillation and nonoscillation criteria for the second order neutral delay difference equation \[ \Delta (c_n\Delta (y_n+p_ny_{n-k}))+q_ny_{n+1-m}^\beta =0,\quad n\ge n_0 \] where $k$, $m$ are positive integers and $\beta $ is a ratio of odd positive integers are established, under the condition $\sum _{n=n_0}^{\infty }\frac{1}{c_n}<{\infty }.$ (English)
Keyword: neutral delay
Keyword: difference equation
Keyword: oscillation
MSC: 39A10
MSC: 39A11
MSC: 39A12
MSC: 39A20
idZBL: Zbl 1080.39503
idMR: MR2018841
.
Date available: 2009-09-24T11:08:01Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127851
.
Reference: [1] R. P. Agarwal: Difference Equations and Inequalities, Secon Edition.Marcel Dekker, New York, 2000. MR 1740241
Reference: [2] R. P. Agarwal and P. J. Y. Wong: Advanced Topics in Difference Equations.Kluwer Publ., Dordrecht, 1997. MR 1447437
Reference: [3] D. D. Bainov and D. P. Mishev: Oscillation Theory for Neutral Differential Equations with Delay.Adam Hilger, 1991. MR 1147908
Reference: [4] W. T. Li and D. P. Mishev: Classification and existence of positive solutions of second order nonlinear neutral difference equations.Funk. Ekv. 40 (1997), 371–393.
Reference: [5] B. G. Zhang: Oscillation and asymptotic behavior of second order difference equations.J. Math. Anal. Appl. 173 (1993), 58–68. Zbl 0780.39006, MR 1205909, 10.1006/jmaa.1993.1052
.

Files

Files Size Format View
CzechMathJ_53-2003-4_13.pdf 339.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo