Previous |  Up |  Next

Article

Title: Banach and statistical cores of bounded sequences (English)
Author: Orhan, C.
Author: Yardimci, Ş.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 54
Issue: 1
Year: 2004
Pages: 65-72
Summary lang: English
.
Category: math
.
Summary: In this paper, we are mainly concerned with characterizing matrices that map every bounded sequence into one whose Banach core is a subset of the statistical core of the original sequence. (English)
Keyword: almost convergent sequence
Keyword: statistically convergent sequence
Keyword: core of a sequence
MSC: 40A05
MSC: 40C05
idZBL: Zbl 1045.40002
idMR: MR2040219
.
Date available: 2009-09-24T11:09:39Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127864
.
Reference: [1] B.  Choudhary: An extension of Knopp’s Core Theorem.J. Math. Appl. 132 (1988), 226–233. Zbl 0648.40004, MR 0942366
Reference: [2] J.  Connor: The statistical and strong $p$-Cesáro convergences.Analysis 8 (1988), 47–63. MR 0954458, 10.1524/anly.1988.8.12.47
Reference: [3] R. G.  Cooke: Infinite Matrices and Sequence Spaces.Macmillan, , 1950. Zbl 0040.02501, MR 0040451
Reference: [4] G.  Das: Sublinear functionals and a class of conservative Matrices.Bull. Inst. Math. Acad. Sinica 15 (1987), 89–106. Zbl 0632.46008, MR 0947779
Reference: [5] G.  Das and S. K.  Mishra: A note on a theorem of Maddox on strong almost convergence.Math. Proc. Camb. Phil. Soc. 89 (1981), 393–396. MR 0602293, 10.1017/S0305004100058291
Reference: [6] K.  Demirci: A statistical core of a sequence.Demonstratio Math. 33 (2000), 343–353. Zbl 0959.40001, MR 1769428, 10.1515/dema-2000-0216
Reference: [7] J. P.  Duran: Infinite matrices and almost convergence.Math. Z. 128 (1972), 75–83. Zbl 0228.40005, MR 0340881, 10.1007/BF01111514
Reference: [8] J. A.  Fridy: On statistical convergence.Analysis 5 (1985), 301–313. Zbl 0588.40001, MR 0816582, 10.1524/anly.1985.5.4.301
Reference: [9] J. A.  Fridy: Statistical limit points.Proc. Amer. Math. Soc. 118 (1993), 1187–1192. Zbl 0776.40001, MR 1181163, 10.1090/S0002-9939-1993-1181163-6
Reference: [10] J. A.  Fridy and C.  Orhan: Statistical limit superior and limit inferior.Proc. Amer. Math. Soc. 125 (1997), 3625–3631. MR 1416085, 10.1090/S0002-9939-97-04000-8
Reference: [11] J. A.  Fridy and C.  Orhan: Statistical core theorems.J.  Math. Anal. Appl. 208 (1997), 520–527. MR 1441452, 10.1006/jmaa.1997.5350
Reference: [12] M.  Jerison: The set of all generalized limits of bounded sequences.Canad. J. Math. 9 (1957), 79–89. Zbl 0077.31004, MR 0083697, 10.4153/CJM-1957-012-x
Reference: [13] J. P. King: Almost summable sequences.Proc. Amer. Math. Soc. 17 (1996), 1219–1225. MR 0201872
Reference: [14] K.  Knopp: Zur theorie der limitierungsverfahren (Erste Mitteilung).Math. Z. 31 (1930), 97–127. MR 1545100, 10.1007/BF01246399
Reference: [15] E.  Kolk: Matrix summability of statistically convergent sequences.Analysis 13 (1993), 77–83. Zbl 0801.40005, MR 1245744, 10.1524/anly.1993.13.12.77
Reference: [16] J.  Li and J. A.  Fridy: Matrix transformations of statistical cores of complex sequences.Analysis 20 (2000), 15–34. MR 1757066, 10.1524/anly.2000.20.1.15
Reference: [17] L.  Loone: Knopp’s core and almost-convergence core in the space $m$.Tartu Riikl. All. Toimetised 335 (1975), 148–156. MR 0380356
Reference: [18] G. G.  Lorentz: A contribution to the theory of divergent sequences.Acta Math. 80 (1948), 167–190. Zbl 0031.29501, MR 0027868, 10.1007/BF02393648
Reference: [19] I. J.  Maddox: Some analogues of Knopp’s Core Theorem.Internat. J.  Math. Math. Sci. 2 (1979), 605–614. Zbl 0416.40004, MR 0549529, 10.1155/S0161171279000454
Reference: [20] H. I.  Miller: A measure theoretical subsequence characterization of statistical convergence.Trans. Amer. Math. Soc. 347 (1995), 1811–1819. Zbl 0830.40002, MR 1260176, 10.1090/S0002-9947-1995-1260176-6
Reference: [21] H. I.  Miller and C.  Orhan: On almost convergent and statistically convergent subsequences.Acta Math. Hungar. 93 (2001), 149–165. MR 1924673, 10.1023/A:1013877718406
Reference: [22] I.  Niven, H. S.  Zuckerman and H.  Montgomery: An Introduction to the Theory of Numbers, Fifth Ed.Wiley, New York, 1991. MR 1083765
Reference: [23] C.  Orhan: Sublinear functionals and Knopp’s Core Theorem.Internat. J.  Math. Math. Sci. 13 (1990), 461–468. MR 1068009, 10.1155/S0161171290000680
Reference: [24] G. M.  Petersen: Regular Matrix Transformations.McGraw-Hill, London, 1966. Zbl 0159.35401, MR 0225045
Reference: [25] T.  Šalat: On statistically convergent sequences of real numbers.Math. Slovaca 30 (1980), 139–150. MR 0587239
Reference: [26] S.  Simons: Banach limits, infinite matrices and sublinear functionals.J.  Math. Anal. Appl. 26 (1969), 640–655. Zbl 0176.46001, MR 0241957, 10.1016/0022-247X(69)90203-0
Reference: [27] Ş.  Yardimci: Core theorems for real bounded sequences.Indian J.  Pure Appl. Math. 27 (1996), 861–867. Zbl 0862.40002, MR 1407221
.

Files

Files Size Format View
CzechMathJ_54-2004-1_5.pdf 316.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo