Title:
|
Statistical cluster points of sequences in finite dimensional spaces (English) |
Author:
|
Pehlivan, S. |
Author:
|
Güncan, A. |
Author:
|
Mamedov, M. A. |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
54 |
Issue:
|
1 |
Year:
|
2004 |
Pages:
|
95-102 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper we study the set of statistical cluster points of sequences in $m$-dimensional spaces. We show that some properties of the set of statistical cluster points of the real number sequences remain in force for the sequences in $m$-dimensional spaces too. We also define a notion of $\Gamma $-statistical convergence. A sequence $x$ is $\Gamma $-statistically convergent to a set $C$ if $C$ is a minimal closed set such that for every $\epsilon > 0 $ the set $ \lbrace k\:\rho (C, x_k ) \ge \epsilon \rbrace $ has density zero. It is shown that every statistically bounded sequence is $\Gamma $-statistically convergent. Moreover if a sequence is $\Gamma $-statistically convergent then the limit set is a set of statistical cluster points. (English) |
Keyword:
|
compact sets |
Keyword:
|
natural density |
Keyword:
|
statistically bounded sequence |
Keyword:
|
statistical cluster point |
MSC:
|
11B05 |
MSC:
|
40A05 |
idZBL:
|
Zbl 1045.40004 |
idMR:
|
MR2040222 |
. |
Date available:
|
2009-09-24T11:10:02Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127867 |
. |
Reference:
|
[1] J. S. Connor: The statistical and strong $p$-Cesàro convergence of sequences.Analysis 8 (1988), 47–63. Zbl 0653.40001, MR 0954458 |
Reference:
|
[2] H. Fast: Sur la convergence statistique.Collog. Math. 2 (1951), 241–244. Zbl 0044.33605, MR 0048548, 10.4064/cm-2-3-4-241-244 |
Reference:
|
[3] J. A. Fridy: On statistical convergence.Analysis 5 (1985), 301–313. Zbl 0588.40001, MR 0816582 |
Reference:
|
[4] J. A. Fridy: Statistical limit points.Proc. Amer. Math. Soc. 118 (1993), 1187–1192. Zbl 0776.40001, MR 1181163, 10.1090/S0002-9939-1993-1181163-6 |
Reference:
|
[5] J. A. Fridy and C. Orhan: Statistical limit superior and limit inferior.Proc. Amer. Math. Soc. 125 (1997), 3625–3631. MR 1416085, 10.1090/S0002-9939-97-04000-8 |
Reference:
|
[6] E. Kolk: The statistical convergence in Banach spaces.Acta Comm. Univ. Tartuensis 928 (1991), 41–52. MR 1150232 |
Reference:
|
[7] S. Pehlivan and M. A. Mamedov: Statistical cluster points and turnpike.Optimization 48 (2000), 93–106. MR 1772096, 10.1080/02331930008844495 |
Reference:
|
[8] M. A. Mamedov and S. Pehlivan: Statistical cluster points and Turnpike theorem in nonconvex problems.J. Math. Anal. Appl. 256 (2001), 686–693. MR 1821765, 10.1006/jmaa.2000.7061 |
Reference:
|
[9] T. Šalát: On statistically convergent sequences of real numbers.Math. Slovaca 30 (1980), 139–150. MR 0587239 |
. |