Previous |  Up |  Next

Article

Title: Statistical cluster points of sequences in finite dimensional spaces (English)
Author: Pehlivan, S.
Author: Güncan, A.
Author: Mamedov, M. A.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 54
Issue: 1
Year: 2004
Pages: 95-102
Summary lang: English
.
Category: math
.
Summary: In this paper we study the set of statistical cluster points of sequences in $m$-dimensional spaces. We show that some properties of the set of statistical cluster points of the real number sequences remain in force for the sequences in $m$-dimensional spaces too. We also define a notion of $\Gamma $-statistical convergence. A sequence $x$ is $\Gamma $-statistically convergent to a set $C$ if $C$ is a minimal closed set such that for every $\epsilon > 0 $ the set $ \lbrace k\:\rho (C, x_k ) \ge \epsilon \rbrace $ has density zero. It is shown that every statistically bounded sequence is $\Gamma $-statistically convergent. Moreover if a sequence is $\Gamma $-statistically convergent then the limit set is a set of statistical cluster points. (English)
Keyword: compact sets
Keyword: natural density
Keyword: statistically bounded sequence
Keyword: statistical cluster point
MSC: 11B05
MSC: 40A05
idZBL: Zbl 1045.40004
idMR: MR2040222
.
Date available: 2009-09-24T11:10:02Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127867
.
Reference: [1] J. S. Connor: The statistical and strong $p$-Cesàro convergence of sequences.Analysis 8 (1988), 47–63. Zbl 0653.40001, MR 0954458
Reference: [2] H.  Fast: Sur la convergence statistique.Collog. Math. 2 (1951), 241–244. Zbl 0044.33605, MR 0048548, 10.4064/cm-2-3-4-241-244
Reference: [3] J. A. Fridy: On statistical convergence.Analysis 5 (1985), 301–313. Zbl 0588.40001, MR 0816582
Reference: [4] J. A. Fridy: Statistical limit points.Proc. Amer. Math. Soc. 118 (1993), 1187–1192. Zbl 0776.40001, MR 1181163, 10.1090/S0002-9939-1993-1181163-6
Reference: [5] J. A. Fridy and C.  Orhan: Statistical limit superior and limit inferior.Proc. Amer. Math. Soc. 125 (1997), 3625–3631. MR 1416085, 10.1090/S0002-9939-97-04000-8
Reference: [6] E.  Kolk: The statistical convergence in Banach spaces.Acta Comm. Univ. Tartuensis 928 (1991), 41–52. MR 1150232
Reference: [7] S.  Pehlivan and M. A. Mamedov: Statistical cluster points and turnpike.Optimization 48 (2000), 93–106. MR 1772096, 10.1080/02331930008844495
Reference: [8] M. A.  Mamedov and S. Pehlivan: Statistical cluster points and Turnpike theorem in nonconvex problems.J.  Math. Anal. Appl. 256 (2001), 686–693. MR 1821765, 10.1006/jmaa.2000.7061
Reference: [9] T. Šalát: On statistically convergent sequences of real numbers.Math. Slovaca 30 (1980), 139–150. MR 0587239
.

Files

Files Size Format View
CzechMathJ_54-2004-1_8.pdf 319.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo