Title:
|
Almost $\pi$-lattices (English) |
Author:
|
Jayaram, C. |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
54 |
Issue:
|
1 |
Year:
|
2004 |
Pages:
|
119-130 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper we establish some conditions for an almost $\pi $-domain to be a $\pi $-domain. Next $\pi $-lattices satisfying the union condition on primes are characterized. Using these results, some new characterizations are given for $\pi $-rings. (English) |
Keyword:
|
$\pi $-domain |
Keyword:
|
almost $\pi $-domain |
Keyword:
|
$\pi $-ring |
Keyword:
|
$d$-prime element |
MSC:
|
06F05 |
MSC:
|
06F10 |
MSC:
|
13A15 |
idZBL:
|
Zbl 1049.06012 |
idMR:
|
MR2040225 |
. |
Date available:
|
2009-09-24T11:10:27Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127870 |
. |
Reference:
|
[1] F. Alarcon, D. D. Anderson and C. Jayaram: Some results on abstract commutative ideal theory.Period. Math. Hungar. 30 (1995), 1–26. MR 1318850, 10.1007/BF01876923 |
Reference:
|
[2] D. D. Anderson: Abstract commutative ideal theory without chain condition.Algebra Universalis 6 (1976), 131–145. Zbl 0355.06022, MR 0419310, 10.1007/BF02485825 |
Reference:
|
[3] D. D. Anderson, C. Jayaram and P. A. Phiri: Baer lattices.Acta. Sci. Math. (Szeged) 59 (1994), 61–74. MR 1285430 |
Reference:
|
[4] D. D. Anderson and C. Jayaram: Principal element lattices.Czechoslovak Math. J. 46(121) (1996), 99–109. MR 1371692 |
Reference:
|
[5] D. D. Anderson and E. W. Johnson: Dilworth’s principal elements.Algebra Universalis 36 (1996), 392–404. MR 1408734, 10.1007/BF01236764 |
Reference:
|
[6] R. P. Dilworth: Abstract commutative ideal theory.Pacific J. Math. 12 (1962), 481–498. Zbl 0111.04104, MR 0143781, 10.2140/pjm.1962.12.481 |
Reference:
|
[7] R. W. Gilmer: Multiplicative Ideal Theory.Marcel Dekker, New York, 1972. Zbl 0248.13001, MR 0427289 |
Reference:
|
[8] W. Heinzer and D. Lantz: The Laskerian property in commutative rings.J. Algebra 72 (1981), 101–114. MR 0634618, 10.1016/0021-8693(81)90313-6 |
Reference:
|
[9] C. Jayaram and E. W. Johnson: Almost principal element lattices.Internat. J. Math. Math. Sci. 18 (1995), 535–538. MR 1331954, 10.1155/S0161171295000676 |
Reference:
|
[10] C. Jayaram and E. W. Johnson: Some results on almost principal element lattices.Period. Math. Hungar. 31 (1995), 33–42. MR 1349291, 10.1007/BF01876351 |
Reference:
|
[11] C. Jayaram and E. W. Johnson: $s$-prime elements in multiplicative lattices.Period. Math. Hungar. 31 (1995), 201–208. MR 1610262, 10.1007/BF01882195 |
Reference:
|
[12] C. Jayaram and E. W. Johnson: Dedekind lattices.Acta. Sci. Math. (Szeged) 63 (1997), 367–378. MR 1480486 |
Reference:
|
[13] C. Jayaram and E. W. Johnson: $\sigma $-elements in multiplicative lattices.Czechoslovak Math. J. 48(123) (1998), 641–651. MR 1658225, 10.1023/A:1022475220032 |
Reference:
|
[14] B. G. Kang: On the converse of a well known fact about Krull donains.J. Algebra 124 (1989), 284–299. MR 1011595, 10.1016/0021-8693(89)90131-2 |
Reference:
|
[15] M. D. Larsen and P. J. McCarthy: Multiplicative Theory of Ideals.Academic Press, New York, 1971. MR 0414528 |
Reference:
|
[16] K. B. Levitz: A characterization of general ZPI-rings.Proc. Amer. Math. Soc. 32 (1972), 376–380. MR 0294312 |
Reference:
|
[17] P. J. McCarthy: Principal elements of lattices of ideals.Proc. Amer. Math. Soc. 30 (1971), 43–45. Zbl 0218.13001, MR 0279080, 10.1090/S0002-9939-1971-0279080-4 |
Reference:
|
[18] N. K. Thakare, C. S. Manjarekar and S. Maeda: Abstract spectral theory. II. Minimal characters and minimal spectrums of multiplicative lattices.Acta. Sci. Math. (Szeged) 52 (1988), 53–67. MR 0957788 |
. |