Previous |  Up |  Next

Article

Title: Almost $\pi$-lattices (English)
Author: Jayaram, C.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 54
Issue: 1
Year: 2004
Pages: 119-130
Summary lang: English
.
Category: math
.
Summary: In this paper we establish some conditions for an almost $\pi $-domain to be a $\pi $-domain. Next $\pi $-lattices satisfying the union condition on primes are characterized. Using these results, some new characterizations are given for $\pi $-rings. (English)
Keyword: $\pi $-domain
Keyword: almost $\pi $-domain
Keyword: $\pi $-ring
Keyword: $d$-prime element
MSC: 06F05
MSC: 06F10
MSC: 13A15
idZBL: Zbl 1049.06012
idMR: MR2040225
.
Date available: 2009-09-24T11:10:27Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127870
.
Reference: [1] F.  Alarcon, D. D.  Anderson and C.  Jayaram: Some results on abstract commutative ideal theory.Period. Math. Hungar. 30 (1995), 1–26. MR 1318850, 10.1007/BF01876923
Reference: [2] D. D.  Anderson: Abstract commutative ideal theory without chain condition.Algebra Universalis 6 (1976), 131–145. Zbl 0355.06022, MR 0419310, 10.1007/BF02485825
Reference: [3] D. D.  Anderson, C.  Jayaram and P. A.  Phiri: Baer lattices.Acta. Sci. Math. (Szeged) 59 (1994), 61–74. MR 1285430
Reference: [4] D. D.  Anderson and C.  Jayaram: Principal element lattices.Czechoslovak Math. J. 46(121) (1996), 99–109. MR 1371692
Reference: [5] D. D.  Anderson and E. W.  Johnson: Dilworth’s principal elements.Algebra Universalis 36 (1996), 392–404. MR 1408734, 10.1007/BF01236764
Reference: [6] R. P.  Dilworth: Abstract commutative ideal theory.Pacific J. Math. 12 (1962), 481–498. Zbl 0111.04104, MR 0143781, 10.2140/pjm.1962.12.481
Reference: [7] R. W.  Gilmer: Multiplicative Ideal Theory.Marcel Dekker, New York, 1972. Zbl 0248.13001, MR 0427289
Reference: [8] W.  Heinzer and D.  Lantz: The Laskerian property in commutative rings.J. Algebra 72 (1981), 101–114. MR 0634618, 10.1016/0021-8693(81)90313-6
Reference: [9] C.  Jayaram and E. W.  Johnson: Almost principal element lattices.Internat. J. Math. Math. Sci. 18 (1995), 535–538. MR 1331954, 10.1155/S0161171295000676
Reference: [10] C.  Jayaram and E. W.  Johnson: Some results on almost principal element lattices.Period. Math. Hungar. 31 (1995), 33–42. MR 1349291, 10.1007/BF01876351
Reference: [11] C.  Jayaram and E. W.  Johnson: $s$-prime elements in multiplicative lattices.Period. Math. Hungar. 31 (1995), 201–208. MR 1610262, 10.1007/BF01882195
Reference: [12] C.  Jayaram and E. W.  Johnson: Dedekind lattices.Acta. Sci. Math. (Szeged) 63 (1997), 367–378. MR 1480486
Reference: [13] C.  Jayaram and E. W.  Johnson: $\sigma $-elements in multiplicative lattices.Czechoslovak Math.  J. 48(123) (1998), 641–651. MR 1658225, 10.1023/A:1022475220032
Reference: [14] B. G.  Kang: On the converse of a well known fact about Krull donains.J. Algebra 124 (1989), 284–299. MR 1011595, 10.1016/0021-8693(89)90131-2
Reference: [15] M. D.  Larsen and P. J.  McCarthy: Multiplicative Theory of Ideals.Academic Press, New York, 1971. MR 0414528
Reference: [16] K. B.  Levitz: A characterization of general ZPI-rings.Proc. Amer. Math. Soc. 32 (1972), 376–380. MR 0294312
Reference: [17] P. J.  McCarthy: Principal elements of lattices of ideals.Proc. Amer. Math. Soc. 30 (1971), 43–45. Zbl 0218.13001, MR 0279080, 10.1090/S0002-9939-1971-0279080-4
Reference: [18] N. K.  Thakare, C. S.  Manjarekar and S.  Maeda: Abstract spectral theory. II.  Minimal characters and minimal spectrums of multiplicative lattices.Acta. Sci. Math. (Szeged) 52 (1988), 53–67. MR 0957788
.

Files

Files Size Format View
CzechMathJ_54-2004-1_11.pdf 327.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo