Title:
|
The structure of disjoint iteration groups on the circle (English) |
Author:
|
Ciepliński, Krzysztof |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
54 |
Issue:
|
1 |
Year:
|
2004 |
Pages:
|
131-153 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The aim of the paper is to investigate the structure of disjoint iteration groups on the unit circle ${\mathbb{S}^1}$, that is, families ${\mathcal F}=\lbrace F^{v}\:{\mathbb{S}^1}\longrightarrow {\mathbb{S}^1}\; v\in V\rbrace $ of homeomorphisms such that \[ F^{v_{1}}\circ F^{v_{2}}=F^{v_{1}+v_{2}},\quad v_1, v_2\in V, \] and each $F^{v}$ either is the identity mapping or has no fixed point ($(V, +)$ is an arbitrary $2$-divisible nontrivial (i.e., $\mathop {\mathrm card}V>1$) abelian group). (English) |
Keyword:
|
(disjoint |
Keyword:
|
non-singular |
Keyword:
|
singular |
Keyword:
|
non-dense |
Keyword:
|
dense |
Keyword:
|
discrete) iteration group |
Keyword:
|
degree |
Keyword:
|
periodic point |
Keyword:
|
orientation-preserving homeomorphism |
Keyword:
|
rotation number |
Keyword:
|
limit set |
Keyword:
|
orbit |
Keyword:
|
system of functional equations |
MSC:
|
20F28 |
MSC:
|
20F38 |
MSC:
|
30D05 |
MSC:
|
37B99 |
MSC:
|
37E10 |
MSC:
|
37E45 |
MSC:
|
39B12 |
MSC:
|
39B32 |
MSC:
|
39B72 |
idZBL:
|
Zbl 1047.37024 |
idMR:
|
MR2040226 |
. |
Date available:
|
2009-09-24T11:10:35Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127871 |
. |
Reference:
|
[1] L. Alsedà, J. Llibre and M. Misiurewicz: Combinatorial Dynamics and Entropy in Dimension One. Advanced Series in Nonlinear Dynamics, 5.World Scientific Publishing Co. Inc., River Edge, 1993. MR 1255515 |
Reference:
|
[2] M. Bajger: On the structure of some flows on the unit circle.Aequationes Math. 55 (1998), 106–121. Zbl 0891.39017, MR 1600588, 10.1007/s000100050023 |
Reference:
|
[3] M. Bajger and M. C. Zdun: On rational flows of continuous functions.Iteration Theory (Batschuns, 1992), World Sci. Publishing, River Edge, 1996, pp. 265–276. MR 1442291 |
Reference:
|
[4] L. S. Block and W. A. Coppel: Dynamics in One Dimension. Lecture Notes in Mathematics, 1513.Springer-Verlag, Berlin, 1992. MR 1176513 |
Reference:
|
[5] N. Bourbaki: Éléments de mathématique. Topologie générale.Hermann, Paris, 1971. Zbl 0249.54001, MR 0358652 |
Reference:
|
[6] K. Ciepliński: On the embeddability of a homeomorphism of the unit circle in disjoint iteration groups.Publ. Math. Debrecen 55 (1999), 363–383. MR 1721896 |
Reference:
|
[7] K. Ciepliński: On conjugacy of disjoint iteration groups on the unit circle.Ann. Math. Sil. 13 (1999), 103–118. MR 1735195 |
Reference:
|
[8] K. Ciepliński: The rotation number of the composition of homeomorphisms.Rocznik Nauk.—Dydakt. AP w Krakowie. Prace Mat. 17 (2000), 83–87. MR 1817486 |
Reference:
|
[9] K. Ciepliński: Topological conjugacy of disjoint flows on the circle.Bull. Korean Math. Soc. 39 (2002), 333–346. MR 1904668, 10.4134/BKMS.2002.39.2.333 |
Reference:
|
[10] K. Ciepliński and M. C. Zdun: On a system of Schröder equations on the circle.Internat. J. Bifur. Chaos Appl. Sci. Engrg. 13 (2003), 1883–1888. MR 2015635, 10.1142/S0218127403007709 |
Reference:
|
[11] I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai: Ergodic Theory. Grundlehren der Mathematischen Wissenschaften, 245.Springer-Verlag, New York, 1982. MR 0832433 |
Reference:
|
[12] Z. Nitecki: Differentiable Dynamics. An Introduction to the Orbit Structure of Diffeomorphisms.The M.I.T. Press Cambridge, Massachusetts-London, 1971. Zbl 0246.58012, MR 0649788 |
Reference:
|
[13] C. T. C. Wall: A Geometric Introduction to Topology.Addison-Wesley Publishing Co., Reading, Massachusetts-London-Don Mills, 1972. MR 0478128 |
Reference:
|
[14] P. Walters: An Introduction to Ergodic Theory. Graduate Texts in Mathematics, 79.Springer-Verlag, New York-Berlin, 1982. MR 0648108 |
Reference:
|
[15] M. C. Zdun: On embedding of homeomorphisms of the circle in a continuous flow.Iteration theory and its functional equations (Lochau, 1984). Lecture Notes in Math., 1163, Springer, Berlin, 1985, pp. 218–231. Zbl 0616.54037, MR 0829776 |
Reference:
|
[16] M. C. Zdun: On the embeddability of commuting functions in a flow.Selected topics in functional equations and iteration theory (Graz, 1991). Grazer Math. Ber., 316, Karl-Franzens-Univ. Graz, Graz, 1992, pp. 201–212. Zbl 0797.39007, MR 1226473 |
Reference:
|
[17] M. C. Zdun: On the orbits of disjoint groups of continuous functions.Rad. Mat. 8 (1992/96), 95–104. MR 1477887 |
Reference:
|
[18] M. C. Zdun: The structure of iteration groups of continuous functions.Aequationes Math. 46 (1993), 19–37. Zbl 0801.39005, MR 1220719, 10.1007/BF01833995 |
Reference:
|
[19] M. C. Zdun: On some invariants of conjugacy of disjoint iteration groups.Results Math. 26 (1994), 403–410. Zbl 0830.39009, MR 1300626, 10.1007/BF03323067 |
. |