Previous |  Up |  Next

Article

Title: The structure of disjoint iteration groups on the circle (English)
Author: Ciepliński, Krzysztof
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 54
Issue: 1
Year: 2004
Pages: 131-153
Summary lang: English
.
Category: math
.
Summary: The aim of the paper is to investigate the structure of disjoint iteration groups on the unit circle ${\mathbb{S}^1}$, that is, families ${\mathcal F}=\lbrace F^{v}\:{\mathbb{S}^1}\longrightarrow {\mathbb{S}^1}\; v\in V\rbrace $ of homeomorphisms such that \[ F^{v_{1}}\circ F^{v_{2}}=F^{v_{1}+v_{2}},\quad v_1, v_2\in V, \] and each $F^{v}$ either is the identity mapping or has no fixed point ($(V, +)$ is an arbitrary $2$-divisible nontrivial (i.e., $\mathop {\mathrm card}V>1$) abelian group). (English)
Keyword: (disjoint
Keyword: non-singular
Keyword: singular
Keyword: non-dense
Keyword: dense
Keyword: discrete) iteration group
Keyword: degree
Keyword: periodic point
Keyword: orientation-preserving homeomorphism
Keyword: rotation number
Keyword: limit set
Keyword: orbit
Keyword: system of functional equations
MSC: 20F28
MSC: 20F38
MSC: 30D05
MSC: 37B99
MSC: 37E10
MSC: 37E45
MSC: 39B12
MSC: 39B32
MSC: 39B72
idZBL: Zbl 1047.37024
idMR: MR2040226
.
Date available: 2009-09-24T11:10:35Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127871
.
Reference: [1] L.  Alsedà, J.  Llibre and M.  Misiurewicz: Combinatorial Dynamics and Entropy in Dimension One. Advanced Series in Nonlinear Dynamics, 5.World Scientific Publishing Co. Inc., River Edge, 1993. MR 1255515
Reference: [2] M. Bajger: On the structure of some flows on the unit circle.Aequationes Math. 55 (1998), 106–121. Zbl 0891.39017, MR 1600588, 10.1007/s000100050023
Reference: [3] M. Bajger and M. C.  Zdun: On rational flows of continuous functions.Iteration Theory (Batschuns, 1992), World Sci. Publishing, River Edge, 1996, pp. 265–276. MR 1442291
Reference: [4] L. S.  Block and W. A.  Coppel: Dynamics in One Dimension. Lecture Notes in Mathematics, 1513.Springer-Verlag, Berlin, 1992. MR 1176513
Reference: [5] N.  Bourbaki: Éléments de mathématique. Topologie générale.Hermann, Paris, 1971. Zbl 0249.54001, MR 0358652
Reference: [6] K.  Ciepliński: On the embeddability of a homeomorphism of the unit circle in disjoint iteration groups.Publ. Math. Debrecen 55 (1999), 363–383. MR 1721896
Reference: [7] K. Ciepliński: On conjugacy of disjoint iteration groups on the unit circle.Ann. Math. Sil. 13 (1999), 103–118. MR 1735195
Reference: [8] K. Ciepliński: The rotation number of the composition of homeomorphisms.Rocznik Nauk.—Dydakt. AP w Krakowie. Prace Mat. 17 (2000), 83–87. MR 1817486
Reference: [9] K.  Ciepliński: Topological conjugacy of disjoint flows on the circle.Bull. Korean Math. Soc. 39 (2002), 333–346. MR 1904668, 10.4134/BKMS.2002.39.2.333
Reference: [10] K.  Ciepliński and M. C. Zdun: On a system of Schröder equations on the circle.Internat. J.  Bifur. Chaos Appl. Sci. Engrg. 13 (2003), 1883–1888. MR 2015635, 10.1142/S0218127403007709
Reference: [11] I. P.  Cornfeld, S. V.  Fomin and Ya. G.  Sinai: Ergodic Theory. Grundlehren der Mathematischen Wissenschaften, 245.Springer-Verlag, New York, 1982. MR 0832433
Reference: [12] Z.  Nitecki: Differentiable Dynamics. An Introduction to the Orbit Structure of Diffeomorphisms.The M.I.T. Press Cambridge, Massachusetts-London, 1971. Zbl 0246.58012, MR 0649788
Reference: [13] C. T. C.  Wall: A Geometric Introduction to Topology.Addison-Wesley Publishing Co., Reading, Massachusetts-London-Don Mills, 1972. MR 0478128
Reference: [14] P.  Walters: An Introduction to Ergodic Theory. Graduate Texts in Mathematics, 79.Springer-Verlag, New York-Berlin, 1982. MR 0648108
Reference: [15] M. C.  Zdun: On embedding of homeomorphisms of the circle in a continuous flow.Iteration theory and its functional equations (Lochau, 1984). Lecture Notes in Math., 1163, Springer, Berlin, 1985, pp. 218–231. Zbl 0616.54037, MR 0829776
Reference: [16] M. C.  Zdun: On the embeddability of commuting functions in a flow.Selected topics in functional equations and iteration theory (Graz, 1991). Grazer Math. Ber., 316, Karl-Franzens-Univ. Graz, Graz, 1992, pp. 201–212. Zbl 0797.39007, MR 1226473
Reference: [17] M. C.  Zdun: On the orbits of disjoint groups of continuous functions.Rad. Mat. 8 (1992/96), 95–104. MR 1477887
Reference: [18] M. C.  Zdun: The structure of iteration groups of continuous functions.Aequationes Math. 46 (1993), 19–37. Zbl 0801.39005, MR 1220719, 10.1007/BF01833995
Reference: [19] M. C.  Zdun: On some invariants of conjugacy of disjoint iteration groups.Results Math. 26 (1994), 403–410. Zbl 0830.39009, MR 1300626, 10.1007/BF03323067
.

Files

Files Size Format View
CzechMathJ_54-2004-1_12.pdf 423.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo