Previous |  Up |  Next

Article

Title: On set covariance and three-point test sets (English)
Author: Rataj, J.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 54
Issue: 1
Year: 2004
Pages: 205-214
Summary lang: English
.
Category: math
.
Summary: The information contained in the measure of all shifts of two or three given points contained in an observed compact subset of $\mathbb{R}^d $ is studied. In particular, the connection of the first order directional derivatives of the described characteristic with the oriented and the unoriented normal measure of a set representable as a finite union of sets with positive reach is established. For smooth convex bodies with positive curvatures, the second and the third order directional derivatives of the characteristic is computed. (English)
Keyword: convex body
Keyword: set with positive reach
Keyword: normal measure
Keyword: set covariance
MSC: 52A22
MSC: 60D05
idZBL: Zbl 1049.52004
idMR: MR2040232
.
Date available: 2009-09-24T11:11:23Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127877
.
Reference: [1] G.  Bianchi, F.  Segala, and A.  Volčič: The solution of the covariogram problem for plane $C^2_+$ convex bodies.J. Differential Geom. 60 (2002), 177–198. MR 1938112, 10.4310/jdg/1090351101
Reference: [2] H.  Federer: Curvature measures.Trans. Amer. Math. Soc. 93 (1959), 418–491. Zbl 0089.38402, MR 0110078, 10.1090/S0002-9947-1959-0110078-1
Reference: [3] H.  Federer: Geometric Measure Theory.Springer-Verlag, Berlin, 1969. Zbl 0176.00801, MR 0257325
Reference: [4] A.  Lešanovský and J.  Rataj: Determination of compact sets in Euclidean spaces by the volume of their dilation.DIANA III (Proc. conf.), MÚ ČSAV, Praha, 1990, pp. 165–177.
Reference: [5] A.  Lešanovský, J.  Rataj and S.  Hojek: 0-1 sequences having the same numbers of (1-1)  couples of given distances.Math. Bohem. 117 (1992), 271–282. MR 1184540
Reference: [6] G.  Matheron: Random Sets and Integral Geometry.J.  Wiley, New York, 1975. Zbl 0321.60009, MR 0385969
Reference: [7] W.  Nagel: Das Geometrische Kovariogramm und verwandte Größen zweiter Ordnung.Habilitationsschrift, Friedrich-Schiller-Universität Jena (1992).
Reference: [8] R.  Pyke: Problems corner.IMS Bulletin 18 (1989), 387.
Reference: [9] J.  Rataj: Characterization of compact sets by their dilation volume.Math. Nachr. 173 (1995), 287–295. Zbl 0826.60009, MR 1336964, 10.1002/mana.19951730116
Reference: [10] J.  Rataj: Estimation of oriented direction distribution of a planar body.Adv. Appl. Probab. 28 (1996), 394–404. Zbl 0861.60023, MR 1387883, 10.2307/1428064
Reference: [11] J.  Rataj: Determination of spherical area measures by means of dilation volumes.Math. Nachr. 235 (2002), 143–162. Zbl 1005.52004, MR 1889282, 10.1002/1522-2616(200202)235:1<143::AID-MANA143>3.0.CO;2-7
Reference: [12] J.  Rataj and M.  Zähle: Mixed curvature measures for sets of positive reach and a translative integral formula.Geom. Dedicata 57 (1995), 259–283. MR 1351855, 10.1007/BF01263484
Reference: [13] J.  Rataj and M.  Zähle: Curvatures and currents for unions of sets with positive reach, II.Ann. Glob. Anal. Geom. 20 (2001), 1–21. MR 1846894, 10.1023/A:1010624214933
Reference: [14] J.  Rataj and M.  Zähle: A remark on mixed curvature measures for sets with positive reach.Beiträge Alg. Geom. 43 (2002), 171–179. MR 1913777
Reference: [15] R.  Schneider: On the mean normal measures of a particle process.Adv. Appl. Probab. 33 (2001), 25–38. Zbl 0978.60013, MR 1825314, 10.1239/aap/999187895
Reference: [16] W.  Weil: The estimation of mean shape and mean particle number in overlapping particle systems in the plane.Adv. Appl. Probab. 27 (1995), 102–119. Zbl 0819.60015, MR 1315581, 10.2307/1428099
.

Files

Files Size Format View
CzechMathJ_54-2004-1_18.pdf 366.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo