Previous |  Up |  Next

Article

Title: $MV$-test spaces versus $MV$-algebras (English)
Author: Nola, Antonio Di
Author: Dvurečenskij, Anatolij
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 54
Issue: 1
Year: 2004
Pages: 189-203
Summary lang: English
.
Category: math
.
Summary: In analogy with effect algebras, we introduce the test spaces and $MV$-test spaces. A test corresponds to a hypothesis on the propositional system, or, equivalently, to a partition of unity. We show that there is a close correspondence between $MV$-algebras and $MV$-test spaces. (English)
Keyword: algebra
Keyword: effect algebra
Keyword: $MV$-algebra
Keyword: test space
Keyword: $MV$-test space
Keyword: state
Keyword: weight
MSC: 03B50
MSC: 03G12
MSC: 06D35
idZBL: Zbl 1049.03044
idMR: MR2040231
.
Date available: 2009-09-24T11:11:15Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127876
.
Reference: [1] P. Busch, P. J. Lahti and P. Mittelstaedt: The Quantum Theory of Measurement. Lecture Notes in Physics.Springer-Verlag, Berlin-Heidelberg-New York-London-Budapest, 1991. MR 1176754
Reference: [2] C. C.  Chang: Algebraic analysis of many valued logics.Trans. Amer. Math. Soc. 88 (1958), 467–490. Zbl 0084.00704, MR 0094302, 10.1090/S0002-9947-1958-0094302-9
Reference: [3] R.  Cignoli, I. M. L.  D’Ottaviano and D.  Mundici: Algebraic Foundations of Many-Valued Reasoning.Kluwer Academic Publ., Dordrecht, 2000. MR 1786097
Reference: [4] F.  Chovanec: States and observables on $MV$-algebras.Tatra Mt. Math. Publ. 3 (1993), 55–65. Zbl 0799.03074, MR 1278519
Reference: [5] A.  Dvurečenskij and S.  Pulmannová: D-test spaces and difference posets.Rep. Math. Phys. 34 (1994), 151–170. MR 1323126, 10.1016/0034-4877(94)90034-5
Reference: [6] A.  Dvurečenskij and S.  Pulmannová: New Trends in Quantum Structures.Kluwer Acad. Publ., Dordrecht, Ister Science, Bratislava, 2000. MR 1861369
Reference: [7] A.  Dvurečenskij and T.  Vetterlein: Pseudoeffect algebras. I.  Basic properties.Inter. J.  Theor. Phys. 40 (2001), 685–701. MR 1831592
Reference: [8] A.  Dvurečenskij and T.  Vetterlein: Pseudoeffect algebras. II.  Group representations.Inter. J.  Theor. Phys. 40 (2001), 703–726. MR 1831593
Reference: [9] D. J.  Foulis and M. K.  Bennett: Effect algebras and unsharp quantum logics.Found. Phys. 24 (1994), 1325–1346. MR 1304942, 10.1007/BF02283036
Reference: [10] D. J.  Foulis and C. H.  Randall: Operational statistics. I.  Basic concepts.J.  Math. Phys. 13 (1972), 1667–1675. MR 0416417, 10.1063/1.1665890
Reference: [11] S.  Gudder: Effect test spaces.Inter. J.  Theor. Phys. 36 (1997), 2681–2705. Zbl 0946.81006, MR 1614188
Reference: [12] A. N.  Kolmogorov: Grundbegriffe der Wahrscheinlichkeitsrechnung., Berlin, 1933. Zbl 0007.21601
Reference: [13] D.  Mundici: Interpretation of $AF$ $C^*$-algebras in Łukasiewicz sentential calculus.J.  Funct. Anal. 65 (1986), 15–63. Zbl 0597.46059, MR 0819173, 10.1016/0022-1236(86)90015-7
Reference: [14] D.  Mundici: Averaging the truth-value in Łukasiewicz logic.Studia Logica 55 (1995), 113–127. Zbl 0836.03016, MR 1348840, 10.1007/BF01053035
Reference: [15] D.  Mundici: Reasoning on imprecisely defined functions.In: Discovering the World with Fuzzy Logic. Studies in Fuzziness and Soft Computing, V.  Novák, I.  Perfilieva (eds.), Physica-Verlag, Berlin, 2000, pp. 331–366. Zbl 1007.03024, MR 1858107
Reference: [16] Z.  Riečanová: A generalization of blocks for lattice effect algebras.Inter. J.  Theoret. Phys. 39 (2000), 231–237. MR 1762594
Reference: [17] B.  Riečan and D.  Mundici: Probability on $MV$-algebras.In: Handbook of Measure Theory, E.  Pap (ed.), North-Holland, Amsterdam, 2002, pp. 869–910. MR 1954631
.

Files

Files Size Format View
CzechMathJ_54-2004-1_17.pdf 378.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo