Title:
|
$MV$-test spaces versus $MV$-algebras (English) |
Author:
|
Nola, Antonio Di |
Author:
|
Dvurečenskij, Anatolij |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
54 |
Issue:
|
1 |
Year:
|
2004 |
Pages:
|
189-203 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In analogy with effect algebras, we introduce the test spaces and $MV$-test spaces. A test corresponds to a hypothesis on the propositional system, or, equivalently, to a partition of unity. We show that there is a close correspondence between $MV$-algebras and $MV$-test spaces. (English) |
Keyword:
|
algebra |
Keyword:
|
effect algebra |
Keyword:
|
$MV$-algebra |
Keyword:
|
test space |
Keyword:
|
$MV$-test space |
Keyword:
|
state |
Keyword:
|
weight |
MSC:
|
03B50 |
MSC:
|
03G12 |
MSC:
|
06D35 |
idZBL:
|
Zbl 1049.03044 |
idMR:
|
MR2040231 |
. |
Date available:
|
2009-09-24T11:11:15Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127876 |
. |
Reference:
|
[1] P. Busch, P. J. Lahti and P. Mittelstaedt: The Quantum Theory of Measurement. Lecture Notes in Physics.Springer-Verlag, Berlin-Heidelberg-New York-London-Budapest, 1991. MR 1176754 |
Reference:
|
[2] C. C. Chang: Algebraic analysis of many valued logics.Trans. Amer. Math. Soc. 88 (1958), 467–490. Zbl 0084.00704, MR 0094302, 10.1090/S0002-9947-1958-0094302-9 |
Reference:
|
[3] R. Cignoli, I. M. L. D’Ottaviano and D. Mundici: Algebraic Foundations of Many-Valued Reasoning.Kluwer Academic Publ., Dordrecht, 2000. MR 1786097 |
Reference:
|
[4] F. Chovanec: States and observables on $MV$-algebras.Tatra Mt. Math. Publ. 3 (1993), 55–65. Zbl 0799.03074, MR 1278519 |
Reference:
|
[5] A. Dvurečenskij and S. Pulmannová: D-test spaces and difference posets.Rep. Math. Phys. 34 (1994), 151–170. MR 1323126, 10.1016/0034-4877(94)90034-5 |
Reference:
|
[6] A. Dvurečenskij and S. Pulmannová: New Trends in Quantum Structures.Kluwer Acad. Publ., Dordrecht, Ister Science, Bratislava, 2000. MR 1861369 |
Reference:
|
[7] A. Dvurečenskij and T. Vetterlein: Pseudoeffect algebras. I. Basic properties.Inter. J. Theor. Phys. 40 (2001), 685–701. MR 1831592 |
Reference:
|
[8] A. Dvurečenskij and T. Vetterlein: Pseudoeffect algebras. II. Group representations.Inter. J. Theor. Phys. 40 (2001), 703–726. MR 1831593 |
Reference:
|
[9] D. J. Foulis and M. K. Bennett: Effect algebras and unsharp quantum logics.Found. Phys. 24 (1994), 1325–1346. MR 1304942, 10.1007/BF02283036 |
Reference:
|
[10] D. J. Foulis and C. H. Randall: Operational statistics. I. Basic concepts.J. Math. Phys. 13 (1972), 1667–1675. MR 0416417, 10.1063/1.1665890 |
Reference:
|
[11] S. Gudder: Effect test spaces.Inter. J. Theor. Phys. 36 (1997), 2681–2705. Zbl 0946.81006, MR 1614188 |
Reference:
|
[12] A. N. Kolmogorov: Grundbegriffe der Wahrscheinlichkeitsrechnung., Berlin, 1933. Zbl 0007.21601 |
Reference:
|
[13] D. Mundici: Interpretation of $AF$ $C^*$-algebras in Łukasiewicz sentential calculus.J. Funct. Anal. 65 (1986), 15–63. Zbl 0597.46059, MR 0819173, 10.1016/0022-1236(86)90015-7 |
Reference:
|
[14] D. Mundici: Averaging the truth-value in Łukasiewicz logic.Studia Logica 55 (1995), 113–127. Zbl 0836.03016, MR 1348840, 10.1007/BF01053035 |
Reference:
|
[15] D. Mundici: Reasoning on imprecisely defined functions.In: Discovering the World with Fuzzy Logic. Studies in Fuzziness and Soft Computing, V. Novák, I. Perfilieva (eds.), Physica-Verlag, Berlin, 2000, pp. 331–366. Zbl 1007.03024, MR 1858107 |
Reference:
|
[16] Z. Riečanová: A generalization of blocks for lattice effect algebras.Inter. J. Theoret. Phys. 39 (2000), 231–237. MR 1762594 |
Reference:
|
[17] B. Riečan and D. Mundici: Probability on $MV$-algebras.In: Handbook of Measure Theory, E. Pap (ed.), North-Holland, Amsterdam, 2002, pp. 869–910. MR 1954631 |
. |