Previous |  Up |  Next

Article

Title: Strictly cyclic algebra of operators acting on Banach spaces $H^p(\beta)$ (English)
Author: Yousefi, B.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 54
Issue: 1
Year: 2004
Pages: 261-266
Summary lang: English
.
Category: math
.
Summary: Let $\lbrace \beta (n)\rbrace ^{\infty }_{n=0}$ be a sequence of positive numbers and $1 \le p < \infty $. We consider the space $H^{p}(\beta )$ of all power series $f(z)=\sum ^{\infty }_{n=0}\hat{f}(n)z^{n}$ such that $\sum ^{\infty }_{n=0}|\hat{f}(n)|^{p}\beta (n)^{p} < \infty $. We investigate strict cyclicity of $H^{\infty }_{p}(\beta )$, the weakly closed algebra generated by the operator of multiplication by $z$ acting on $H^{p}(\beta )$, and determine the maximal ideal space, the dual space and the reflexivity of the algebra $H^{\infty }_{p}(\beta )$. We also give a necessary condition for a composition operator to be bounded on $H^{p}(\beta )$ when $H^{\infty }_{p}(\beta )$ is strictly cyclic. (English)
Keyword: the Banach space of formal power series associated with a sequence $\beta $
Keyword: bounded point evaluation
Keyword: strictly cyclic maximal ideal space
Keyword: Schatten $p$-class
Keyword: reflexive algebra
Keyword: semisimple algebra
Keyword: composition operator
MSC: 46E15
MSC: 47A16
MSC: 47A25
MSC: 47B37
idZBL: Zbl 1049.47033
idMR: MR2040238
.
Date available: 2009-09-24T11:12:06Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127883
.
Reference: [1] J.  B.  Conway: A Course in Functional Analysis.Springer-Verlag, New York, 1985. Zbl 0558.46001, MR 0768926
Reference: [2] J.  B.  Conway: The Theory of Subnormal Operators.American Mathematical Society, 1991. Zbl 0743.47012, MR 1112128
Reference: [3] K.  Seddighi, K.  Hedayatiyan and B.  Yousefi: Operators acting on certain Banach spaces of analytic functions.Internat. J.  Math. Sci. 18 (1995), 107–110. MR 1311579, 10.1155/S0161171295000147
Reference: [4] A.  L.  Shields: Weighted shift operators and analytic function theory.Math. Survey, A.M.S. Providence 13 (1974), 49–128. Zbl 0303.47021, MR 0361899
Reference: [5] B.  Yousefi: On the space  $\ell ^{p}(\beta )$.Rend. Circ. Mat. Palermo Serie  II XLIX (2000), 115–120. MR 1753456
Reference: [6] B.  Yousefi: Bounded analytic structure of the Banach space of formal power series.Rend. Circ. Mat. Palermo Serie II LI (2002), 403–410. MR 1947463
.

Files

Files Size Format View
CzechMathJ_54-2004-1_24.pdf 324.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo