Title:
|
Some characterizations of completeness for trellises in terms of joins of cycles (English) |
Author:
|
Bhatta, S. Parameshwara |
Author:
|
Shashirekha, H. |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
54 |
Issue:
|
1 |
Year:
|
2004 |
Pages:
|
267-272 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
This paper gives some new characterizations of completeness for trellises by introducing the notion of a cycle-complete trellis. One of our results yields, in particular, a characterization of completeness for trellises of finite length due to K. Gladstien (see K. Gladstien: Characterization of completeness for trellises of finite length, Algebra Universalis 3 (1973), 341–344). (English) |
Keyword:
|
pseudo-ordered set |
Keyword:
|
trellis |
Keyword:
|
$p$-chain |
Keyword:
|
ascending well-ordered $p$-chain |
Keyword:
|
cycle-complete trellis |
Keyword:
|
complete trellis |
MSC:
|
06A06 |
MSC:
|
06B05 |
idZBL:
|
Zbl 1049.06004 |
idMR:
|
MR2040239 |
. |
Date available:
|
2009-09-24T11:12:14Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127884 |
. |
Reference:
|
[1] P. Crawley and R. P. Dilworth: Algebraic Theory of Lattices.Prentice Hall, Inc., Englewood Cliffs, 1973. |
Reference:
|
[2] E. Fried: Tournaments and non-associative lattices.Ann. Univ. Sci. Budapest, Sect. Math. 13 (1970), 151–164. MR 0321837 |
Reference:
|
[3] E. Fried and G. Gratzer: Some examples of weakly associative lattices.Colloq. Math. 27 (1973), 215–221. MR 0327590, 10.4064/cm-27-2-215-221 |
Reference:
|
[4] K. Gladstien: A characterization of complete trellises of finite length.Algebra Universalis 3 (1973), 341–344. Zbl 0318.06002, MR 0349502, 10.1007/BF02945138 |
Reference:
|
[5] S. Parameshwara Bhatta and H. Shashirekha: A characterization of completeness for trellises.Algebra Universalis 44 (2000), 305–308. MR 1816026, 10.1007/s000120050189 |
Reference:
|
[6] H. L. Skala: Trellis theory.Algebra Universalis 1 (1971), 218–233. Zbl 0242.06003, MR 0302523, 10.1007/BF02944982 |
. |