Previous |  Up |  Next

Article

Title: Existence of solutions and of multiple solutions for nonlinear nonsmooth periodic systems (English)
Author: Papageorgiou, Evgenia H.
Author: Papageorgiou, Nikolaos S.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 54
Issue: 2
Year: 2004
Pages: 347-371
Summary lang: English
.
Category: math
.
Summary: In this paper we examine nonlinear periodic systems driven by the vectorial $p$-Laplacian and with a nondifferentiable, locally Lipschitz nonlinearity. Our approach is based on the nonsmooth critical point theory and uses the subdifferential theory for locally Lipschitz functions. We prove existence and multiplicity results for the “sublinear” problem. For the semilinear problem (i.e. $p = 2$) using a nonsmooth multidimensional version of the Ambrosetti-Rabinowitz condition, we prove an existence theorem for the “superlinear” problem. Our work generalizes some recent results of Tang (PAMS 126(1998)). (English)
Keyword: $p$-Laplacian
Keyword: nonsmooth critical point theory
Keyword: Clarke subdifferential
Keyword: saddle point theorem
Keyword: periodic solution
Keyword: Poincare-Wirtinger inequality
Keyword: Sobolev inequality
Keyword: nonsmooth Palais-Smale condition
MSC: 34A60
MSC: 34C25
MSC: 37J45
MSC: 47J30
MSC: 49J52
MSC: 49J53
idZBL: Zbl 1080.34532
idMR: MR2059256
.
Date available: 2009-09-24T11:13:14Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127893
.
Reference: [1] H. Brezis and L. Nirenberg: Remarks on finding critical points.Comm. Pure. Appl. Math. 44 (1991), 939–963. MR 1127041, 10.1002/cpa.3160440808
Reference: [2] K. C. Chang: Variational methods for nondifferentiable functionals and their applications to partial differential equations.J.  Math. Anal. Appl. 80 (1981), 102–129. MR 0614246, 10.1016/0022-247X(81)90095-0
Reference: [3] F. H. Clarke: Optimization and Nonsmooth Analysis.Wiley, New York, 1983. Zbl 0582.49001, MR 0709590
Reference: [4] S. Hu and N. S. Papageorgiou: Handbook of Multivalued Analysis. Volume  I: Theory.Kluwer, Dordrecht, 1997. MR 1485775
Reference: [5] S. Hu and N. S. Papageorgiou: Handbook of Multivalued Analysis. Volume  II: Applications.Kluwer, Dordrecht, 1997. MR 1741926
Reference: [6] N. Kourogenis and N. S. Papageorgiou: Nonsmooth critical point theory and nonlinear elliptic equations at resonance.J.  Austral. Math. Soc. (Series  A) 69 (2000), 245–271. MR 1775181, 10.1017/S1446788700002202
Reference: [7] N. Kourogenis and N. S. Papageorgiou: Periodic solutions for quasilinear differential equations with discontinuous nonlinearities.Acta. Sci. Math. (Szeged) 65 (1999), 529–542. MR 1737269
Reference: [8] G. Lebourg: Valeur moyenne pour gradient généralisé.CRAS Paris 281 (1975), 795–797. Zbl 0317.46034, MR 0388097
Reference: [9] J. Mawhin and M. Willem: Critical Point Theory and Hamiltonian Systems.Springer-Verlag, Berlin, 1989. MR 0982267
Reference: [10] Z. Naniewicz and P. Panagiotopoulos: Mathematical Theory of Hemivariational Inequalities and Applications.Marcel Dekker, New York, 1994. MR 1304257
Reference: [11] P. Rabinowitz: Minimax Methods in Critical Point Theory with Applications to Differential Equations. Conference Board of the Mathematical Sciences, Regional Conference Series in Mathematics, No.45.AMS, Providence, 1986. MR 0845785
Reference: [12] C. L. Tang: Periodic solutions for nonautonomous second order systems with sublinear nonlinearity.Proc. AMS 126 (1998), 3263–3270. Zbl 0902.34036, MR 1476396
Reference: [13] C. L. Tang: Existence and multiplicity of periodic solutions for nonautonomous second order systems.Nonlin. Anal. 32 (1998), 299–304. Zbl 0949.34032, MR 1610641, 10.1016/S0362-546X(97)00493-8
Reference: [14] J. P. Aubin and H. Frankowska: Set-Valued Analysis.Birkhäuser-Verlag, Boston, 1990. MR 1048347
.

Files

Files Size Format View
CzechMathJ_54-2004-2_8.pdf 442.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo