Previous |  Up |  Next

Article

Title: Integral multilinear forms on $C(K,X)$ spaces (English)
Author: Villanueva, Ignacio
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 54
Issue: 2
Year: 2004
Pages: 373-378
Summary lang: English
.
Category: math
.
Summary: We use polymeasures to characterize when a multilinear form defined on a product of $C(K,X)$ spaces is integral. (English)
Keyword: integral multilinear forms
Keyword: spaces of continuous functions
Keyword: injective tensor product
MSC: 46B28
MSC: 46G10
idZBL: Zbl 1080.46509
idMR: MR2059257
.
Date available: 2009-09-24T11:13:21Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127894
.
Reference: [1] R. C. Blei: Multilinear measure theory and the Grothendieck factorization theorem.Proc. London Math. Soc. 56 (1988), 529–546. MR 0931513
Reference: [2] F. Bombal: Medidas vectoriales y espacios de funciones continuas. Publicaciones del Departamento de Análisis Matemático.Fac. de Matemáticas, Universidad Complutense de Madrid, 1984.
Reference: [3] F. Bombal, I. Villanueva: Integral operators on  $C(K)$ spaces.J.  Math. Anal. Appl. 264 (2001), 107–121. MR 1868331, 10.1006/jmaa.2001.7648
Reference: [4] J. Diestel, J. J. Uhl: Vector Measures. Mathematical Surveys, No.  15.American Math. Soc., Providence, 1977. MR 0453964
Reference: [5] N. Dinculeanu: Vector Measures.Pergamon Press, Oxford-New York-Toronto, 1967. MR 0206190
Reference: [6] N. Dinculeanu, M. Muthiah: Bimeasures in Banach spaces.Preprint. MR 1849394
Reference: [7] I. Dobrakov: On integration in Banach spaces, VIII (polymeasures).Czechoslovak Math.  J. 37 (112) (1987), 487–506. Zbl 0688.28002, MR 0904773
Reference: [8] I. Dobrakov: Representation of multilinear operators on $\times C_0 (T_i , X_i )$. I.Atti Sem. Mat. Fis. Univ. Modena XXXIX (1991), 131–138. MR 1111763
Reference: [9] B. Jefferies: Radon polymeasures.Bull. Austral. Math. Soc. 32 (1985), 207–215. Zbl 0577.28002, MR 0815364, 10.1017/S0004972700009904
Reference: [10] B. Jefferies, W. Ricker: Integration with respect to vector valued radon polymeasures.J.  Austral. Math. Soc. (Series  A) 56 (1994), 17–40. MR 1250991, 10.1017/S1446788700034716
Reference: [11] P. Saab: Integral operators on spaces of continuous vector-valued measures.Proc. Amer. Math. Soc. 111 (1991), 1003–1013. MR 1039263, 10.1090/S0002-9939-1991-1039263-5
Reference: [12] I. Villanueva: Multilinear operators in spaces of continuous functions.Czechoslovak Math.  J 54 (129) (2004), 31–54. MR 2040217, 10.1023/B:CMAJ.0000027245.95757.ee
.

Files

Files Size Format View
CzechMathJ_54-2004-2_9.pdf 319.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo