Previous |  Up |  Next

Article

Title: Complete subobjects of fuzzy sets over $MV$-algebras (English)
Author: Močkoř, Jiří
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 54
Issue: 2
Year: 2004
Pages: 379-392
Summary lang: English
.
Category: math
.
Summary: A subobjects structure of the category $\Omega $- of $\Omega $-fuzzy sets over a complete $MV$-algebra $\Omega =(L,\wedge ,\vee ,\otimes ,\rightarrow )$ is investigated, where an $\Omega $-fuzzy set is a pair ${\mathbf A}=(A,\delta )$ such that $A$ is a set and $\delta \:A\times A\rightarrow \Omega $ is a special map. Special subobjects (called complete) of an $\Omega $-fuzzy set ${\mathbf A}$ which can be identified with some characteristic morphisms ${\mathbf A}\rightarrow \Omega ^*=(L\times L,\mu )$ are then investigated. It is proved that some truth-valued morphisms $\lnot _{\Omega }\:\Omega ^*\rightarrow \Omega ^*,\cap _{\Omega }$, $\cup _{\Omega } \:\Omega ^*\times \Omega ^*\rightarrow \Omega ^*$ are characteristic morphisms of complete subobjects. (English)
Keyword: fuzzy set over $MV$-lagebra
Keyword: complete subobjects
Keyword: subobjects classification
MSC: 03E72
MSC: 06D15
MSC: 18B05
idZBL: Zbl 1080.18001
idMR: MR2059258
.
Date available: 2009-09-24T11:13:28Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127895
.
Reference: [1] M. Eytan: Fuzzy sets: a topos-logical point of view.Fuzzy Sets and Systems 5 (1981), 47–67. Zbl 0453.03059, MR 0595953, 10.1016/0165-0114(81)90033-6
Reference: [2] J. A. Goguen: L-fuzzy sets.J. Math. Anal. Appl. 18 (1967), 145–174. Zbl 0145.24404, MR 0224391, 10.1016/0022-247X(67)90189-8
Reference: [3] R. Goldblatt: TOPOI, The Categorical Analysis of Logic.North-Holland Publ. Co., Amsterdam-New York-Oxford, 1979. MR 0551362
Reference: [4] D. Higgs: A Category Approach to Boolean-Valued Set Theory.Manuscript, University of Waterloo, 1973.
Reference: [5] U. Höhle: Presheaves over GL-monoids.In: Non-Classical Logic and Their Applications to Fuzzy Subsets, Kluwer Academic Publ., Dordrecht-New York, 1995, pp. 127–157. MR 1345643
Reference: [6] U. Höhle: M-Valued sets and sheaves over integral, commutative cl-monoids.Applications of Category Theory to Fuzzy Subsets, Kluwer Academic Publ., Dordrecht-Boston, 1992, pp. 34–72. MR 1154568
Reference: [7] U. Höhle: Classification of subsheaves over GL-algebras.Proceedings of Logic Colloquium  98, Prague, Springer Verlag, 1999. MR 1743263
Reference: [8] U. Höhle: Commutative, residuated l-monoids.Non-Classical Logic and Their Applications to Fuzzy Subsets, Kluwer Academic Publ., Dordrecht-New York, 1995, pp. 53–106. MR 1345641
Reference: [9] U. Höhle: Monoidal closed categories, weak topoi and generalized logics.Fuzzy Sets and Systems 42 (1991), 15–35. MR 1123574, 10.1016/0165-0114(91)90086-6
Reference: [10] P. T. Johnstone: Topos Theory.Academic Press, London-New York-San Francisco, 1977. Zbl 0368.18001, MR 0470019
Reference: [11] : Toposes, Algebraic Geometry and Logic.F. W. Lawvere (ed.), Springer-Verlag, Berlin-Heidelberg-New York, 1971. MR 0330254
Reference: [12] M. Makkai and E. G. Reyes: Firts Order Categorical Logic.Springer-Verlag, Berlin-New York-Heidelberg, 1977. MR 0505486
Reference: [13] A. M. Pitts: Fuzzy sets do not form a topos.Fuzzy Sets and Systems 8 (1982), 101–104. Zbl 0499.03051, MR 0665492, 10.1016/0165-0114(82)90034-3
Reference: [14] D. Ponasse: Categorical studies of fuzzy sets.Fuzzy Sets and Systems 28 (1988), 235–244. Zbl 0675.03032, MR 0976664, 10.1016/0165-0114(88)90031-0
Reference: [15] A. Pultr: Fuzzy mappings and fuzzy sets.Comment. Mat. Univ. Carolin. 17 (1976), . Zbl 0343.02048, MR 0416923
Reference: [16] A. Pultr: Closed Categories of L-fuzzy Sets.Vortrage zur Automaten und Algorithmentheorie, TU Dresden, 1976.
Reference: [17] L. N. Stout: A survey of fuzzy set and topos theory.Fuzzy Sets and Systems 42 (1991), 3–14. Zbl 0738.04002, MR 1123573, 10.1016/0165-0114(91)90085-5
Reference: [18] O. Wyler: Fuzzy logic and categories of fuzzy sets.Non-Classical Logic and Their Applications to Fuzzy Subsets, Kluwer Academic Publ., Dordrecht-New York, 1995, pp. 235–268. Zbl 0827.03039, MR 1345646
.

Files

Files Size Format View
CzechMathJ_54-2004-2_10.pdf 367.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo