Previous |  Up |  Next

Article

Title: On a connection of number theory with graph theory (English)
Author: Somer, Lawrence
Author: Křížek, Michal
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 54
Issue: 2
Year: 2004
Pages: 465-485
Summary lang: English
.
Category: math
.
Summary: We assign to each positive integer $n$ a digraph whose set of vertices is $H=\lbrace 0,1,\dots ,n-1\rbrace $ and for which there is a directed edge from $a\in H$ to $b\in H$ if $a^2\equiv b\hspace{4.44443pt}(\@mod \; n)$. We establish necessary and sufficient conditions for the existence of isolated fixed points. We also examine when the digraph is semiregular. Moreover, we present simple conditions for the number of components and length of cycles. Two new necessary and sufficient conditions for the compositeness of Fermat numbers are also introduced. (English)
Keyword: Fermat numbers
Keyword: Chinese remainder theorem
Keyword: primality
Keyword: group theory
Keyword: digraphs
MSC: 05C20
MSC: 11A07
MSC: 11A15
MSC: 11A51
MSC: 20K01
idZBL: Zbl 1080.11004
idMR: MR2059267
.
Date available: 2009-09-24T11:14:38Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127904
.
Reference: [1] S.  Bryant: Groups, graphs, and Fermat’s last theorem.Amer. Math. Monthly 74 (1967), 152–156. Zbl 0163.02605, MR 0207824, 10.2307/2315605
Reference: [2] R. D. Carmichael: Note on a new number theory function.Bull. Amer. Math. Soc. 16 (1910), 232–238. MR 1558896, 10.1090/S0002-9904-1910-01892-9
Reference: [3] G. Chartrand and L.  Lesniak: Graphs and Digraphs (Third edition).Chapman & Hall, London, 1996. MR 1408678
Reference: [4] G. Chassé: Applications d’un corps fini dans lui-même.Dissertation, Univ. de Rennes  I, 1984. MR 0782298
Reference: [5] G. Chassé: Combinatorial cycles of a polynomial map over a commutative field.Discrete Math. 61 (1986), 21–26. MR 0850926, 10.1016/0012-365X(86)90024-5
Reference: [6] F. Harary: Graph Theory.Addison-Wesley Publ. Company, London, 1969. Zbl 0196.27202, MR 0256911
Reference: [7] P. Kiss: Egy binom kongruenciáról.Az Egi Ho Si Mihn Tanárképzó Fóiskola füzetei (1978), 457–464.
Reference: [8] M. Křížek, F. Luca and L. Somer: 17  Lectures on the Fermat Numbers. From Number Theory to Geometry.Springer-Verlag, New York, 2001. MR 1866957
Reference: [9] M. Křížek and L.  Somer: A necessary and sufficient condition for the primality of Fermat numbers.Math. Bohem. 126 (2001), 541–549. MR 1970256
Reference: [10] F. Robert: Discrete Iterations. Springer Series in Comput. Math. Vol. 6.Springer-Verlag, Berlin, 1986. MR 0851186
Reference: [11] T. D. Rogers: The graph of the square mapping on the prime fields.Discrete Math. 148 (1996), 317–324. Zbl 0843.05048, MR 1368298, 10.1016/0012-365X(94)00250-M
Reference: [12] L. Szalay: A discrete iteration in number theory.BDTF Tud. Közl. 8 (1992), 71–91. (Hungarian) Zbl 0801.11011
.

Files

Files Size Format View
CzechMathJ_54-2004-2_19.pdf 418.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo