Previous |  Up |  Next

Article

Title: On topological classification of non-archimedean Fréchet spaces (English)
Author: Śliwa, Wiesław
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 54
Issue: 2
Year: 2004
Pages: 457-463
Summary lang: English
.
Category: math
.
Summary: We prove that any infinite-dimensional non-archimedean Fréchet space $E$ is homeomorphic to $D^{\mathbb{N}}$ where $D$ is a discrete space with $\mathop {\mathrm card}(D)=\mathop {\mathrm dens}(E)$. It follows that infinite-dimensional non-archimedean Fréchet spaces $E$ and $F$ are homeomorphic if and only if $\mathop {\mathrm dens}(E)= \mathop {\mathrm dens}(F)$. In particular, any infinite-dimensional non-archimedean Fréchet space of countable type over a field $\mathbb{K}$ is homeomorphic to the non-archimedean Fréchet space $\mathbb{K}^{\mathbb{N}}$. (English)
Keyword: non-archimedean Fréchet spaces
Keyword: homeomorphisms
MSC: 46A04
MSC: 46S10
idZBL: Zbl 1080.46525
idMR: MR2059266
.
Date available: 2009-09-24T11:14:30Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127903
.
Reference: [1] L. E. J. Brouver: On the structure of perfect sets of points.Proc. Acad. Amsterdam 12 (1910), 785–794.
Reference: [2] J. Kąkol, C. Perez-Garcia and W. Schikhof: Cardinality and Mackey topologies of non-Archimedean Banach and Fréchet spaces.Bull. Polish Acad. Sci. Math. 44 (1996), 131–141. MR 1416418
Reference: [3] J. B.  Prolla: Topics in Functional Analysis over Valued Division Rings.North-Holland Math. Studies  77, North-Holland Publ. Co., Amsterdam, 1982. Zbl 0506.46059, MR 0688308
Reference: [4] A. C. M. van Rooij: Notes on $p$-adic Banach spaces.Report 7633, Mathematisch Instituut, Katholieke Universiteit, Nijmegen, The Netherlands, 1976, pp. 1–62.
Reference: [5] A C. M. van Rooij: Non-Archimedean Functional Analysis.Marcel Dekker, New York, 1978. Zbl 0396.46061, MR 0512894
Reference: [6] W. H.  Schikhof: Locally convex spaces over non-spherically complete valued fields.Bull. Soc. Math. Belgique 38 (1986), 187–207. MR 0871313
Reference: [7] W.  Śliwa: Examples of non-archimedean nuclear Fréchet spaces without a Schauder basis.Indag. Math. (N.S.) 11 (2000), 607–616. MR 1909824, 10.1016/S0019-3577(00)80029-4
.

Files

Files Size Format View
CzechMathJ_54-2004-2_18.pdf 317.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo