Title:
|
Density-dependent incompressible fluids with non-Newtonian viscosity (English) |
Author:
|
Guillén-González, F. |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
54 |
Issue:
|
3 |
Year:
|
2004 |
Pages:
|
637-656 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We study the system of PDEs describing unsteady flows of incompressible fluids with variable density and non-constant viscosity. Indeed, one considers a stress tensor being a nonlinear function of the symmetric velocity gradient, verifying the properties of $p$-coercivity and $(p-1)$-growth, for a given parameter $p > 1$. The existence of Dirichlet weak solutions was obtained in [2], in the cases $p \ge 12/5$ if $d = 3$ or $p \ge 2$ if $d = 2$, $d$ being the dimension of the domain. In this paper, with help of some new estimates (which lead to point-wise convergence of the velocity gradient), we obtain the existence of space-periodic weak solutions for all $p \ge 2$. In addition, we obtain regularity properties of weak solutions whenever $p \ge 20/9$ (if $d = 3$) or $p \ge 2$ (if $d = 2$). Further, some extensions of these results to more general stress tensors or to Dirichlet boundary conditions (with a Newtonian tensor large enough) are obtained. (English) |
Keyword:
|
variable density |
Keyword:
|
shear-dependent viscosity |
Keyword:
|
power law |
Keyword:
|
Carreau’s laws |
Keyword:
|
weak solution |
Keyword:
|
strong solution |
Keyword:
|
periodic boundary conditions |
MSC:
|
35B10 |
MSC:
|
35D05 |
MSC:
|
35M10 |
MSC:
|
35Q35 |
MSC:
|
76A05 |
MSC:
|
76D03 |
idZBL:
|
Zbl 1080.35004 |
idMR:
|
MR2086722 |
. |
Date available:
|
2009-09-24T11:16:07Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127917 |
. |
Reference:
|
[1] S. A. Antonzev and A. V. Kazhikhov: Mathematical Study of Flows of Non-Homogeneous Fluids.Lectures at the University of Novosibirsk, U.S.S.R, 1973. (Russian) |
Reference:
|
[2] E. Fernández-Cara, F. Guillén and R. R. Ortega: Some theoretical results for visco-plastic and dilatant fluids with variable density.Nonlinear Anal. 28 (1997), 1079–1100. MR 1422802, 10.1016/S0362-546X(97)82861-1 |
Reference:
|
[3] J. Frehse, J. Málek and M. Steinhauer: On existence results for fluids with shear dependent viscosity—unsteady flows.Partial Differential Equations, Praha 1998 Chapman & Hall/CRC, Res. Notes Math., 406, Boca Raton, FL, 2000, pp. 121–129. MR 1713880 |
Reference:
|
[4] A. V. Kazhikhov: Resolution of boundary value problems for nonhomogeneous viscous fluids.Dokl. Akad. Nauk 216 (1974), 1008–1010. MR 0430562 |
Reference:
|
[5] O. A. Ladyzhenskaya: The Mathematical Theory of Viscous Incompressible Flow.Gordon and Breach, 1969. Zbl 0184.52603, MR 0254401 |
Reference:
|
[6] J. L. Lions: Quelques méthodes de résolution des problèmes aux limites non linéaires.Dunod, Gauthier-Villars, 1969. Zbl 0189.40603, MR 0259693 |
Reference:
|
[7] P. L. Lions: Mathematical Topics in Fluid Mechanics. Volume 1, Incompressible models.Clarendon Press, 1996. MR 1422251 |
Reference:
|
[8] J. Málek, K. R. Rajagopal and M. Růžička: Existence and regularity of solutions and the stability of the rest state for fluids with shear dependent viscosity.Math. Models and Methods in Applied Sciences 5 (1995), 789–812. MR 1348587 |
Reference:
|
[9] J. Málek, J. Nečas, M. Rokyta and M. Růžička: Weak and Measure-Valued Solutions to Evolutionary PDEs.Chapman & Hall, 1996. MR 1409366 |
Reference:
|
[10] J. Málek, J. Nečas and M. Růžička: On weak solutions of non-Newtonian incompressible fluids in bounded three-dimensional domains. The case $p \ge 2$.Advances in Differential Equations 6 (2001), 257–302. MR 1799487 |
Reference:
|
[11] J. Simon: Compact sets in $L^p(0,T;B)$.Ann. Mat. Pura Appl. 4 (1987), 65–96. MR 0916688 |
. |