Previous |  Up |  Next

Article

Title: Density-dependent incompressible fluids with non-Newtonian viscosity (English)
Author: Guillén-González, F.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 54
Issue: 3
Year: 2004
Pages: 637-656
Summary lang: English
.
Category: math
.
Summary: We study the system of PDEs describing unsteady flows of incompressible fluids with variable density and non-constant viscosity. Indeed, one considers a stress tensor being a nonlinear function of the symmetric velocity gradient, verifying the properties of $p$-coercivity and $(p-1)$-growth, for a given parameter $p > 1$. The existence of Dirichlet weak solutions was obtained in [2], in the cases $p \ge 12/5$ if $d = 3$ or $p \ge 2$ if $d = 2$, $d$ being the dimension of the domain. In this paper, with help of some new estimates (which lead to point-wise convergence of the velocity gradient), we obtain the existence of space-periodic weak solutions for all $p \ge 2$. In addition, we obtain regularity properties of weak solutions whenever $p \ge 20/9$ (if $d = 3$) or $p \ge 2$ (if $d = 2$). Further, some extensions of these results to more general stress tensors or to Dirichlet boundary conditions (with a Newtonian tensor large enough) are obtained. (English)
Keyword: variable density
Keyword: shear-dependent viscosity
Keyword: power law
Keyword: Carreau’s laws
Keyword: weak solution
Keyword: strong solution
Keyword: periodic boundary conditions
MSC: 35B10
MSC: 35D05
MSC: 35M10
MSC: 35Q35
MSC: 76A05
MSC: 76D03
idZBL: Zbl 1080.35004
idMR: MR2086722
.
Date available: 2009-09-24T11:16:07Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127917
.
Reference: [1] S. A. Antonzev and A. V. Kazhikhov: Mathematical Study of Flows of Non-Homogeneous Fluids.Lectures at the University of Novosibirsk, U.S.S.R, 1973. (Russian)
Reference: [2] E. Fernández-Cara, F. Guillén and R. R. Ortega: Some theoretical results for visco-plastic and dilatant fluids with variable density.Nonlinear Anal. 28 (1997), 1079–1100. MR 1422802, 10.1016/S0362-546X(97)82861-1
Reference: [3] J. Frehse, J. Málek and M. Steinhauer: On existence results for fluids with shear dependent viscosity—unsteady flows.Partial Differential Equations, Praha 1998 Chapman & Hall/CRC, Res. Notes Math., 406, Boca Raton, FL, 2000, pp. 121–129. MR 1713880
Reference: [4] A. V. Kazhikhov: Resolution of boundary value problems for nonhomogeneous viscous fluids.Dokl. Akad. Nauk 216 (1974), 1008–1010. MR 0430562
Reference: [5] O. A. Ladyzhenskaya: The Mathematical Theory of Viscous Incompressible Flow.Gordon and Breach, 1969. Zbl 0184.52603, MR 0254401
Reference: [6] J. L. Lions: Quelques méthodes de résolution des problèmes aux limites non linéaires.Dunod, Gauthier-Villars, 1969. Zbl 0189.40603, MR 0259693
Reference: [7] P. L. Lions: Mathematical Topics in Fluid Mechanics. Volume 1, Incompressible models.Clarendon Press, 1996. MR 1422251
Reference: [8] J. Málek, K. R. Rajagopal and M. Růžička: Existence and regularity of solutions and the stability of the rest state for fluids with shear dependent viscosity.Math. Models and Methods in Applied Sciences 5 (1995), 789–812. MR 1348587
Reference: [9] J. Málek, J. Nečas, M. Rokyta and M. Růžička: Weak and Measure-Valued Solutions to Evolutionary PDEs.Chapman & Hall, 1996. MR 1409366
Reference: [10] J. Málek, J. Nečas and M. Růžička: On weak solutions of non-Newtonian incompressible fluids in bounded three-dimensional domains. The case $p \ge 2$.Advances in Differential Equations 6 (2001), 257–302. MR 1799487
Reference: [11] J. Simon: Compact sets in $L^p(0,T;B)$.Ann. Mat. Pura Appl. 4 (1987), 65–96. MR 0916688
.

Files

Files Size Format View
CzechMathJ_54-2004-3_8.pdf 408.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo