Previous |  Up |  Next

Article

Title: On pure quotients and pure subobjects (English)
Author: Adámek, J.
Author: Rosický, J.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 54
Issue: 3
Year: 2004
Pages: 623-636
Summary lang: English
.
Category: math
.
Summary: In the theory of accessible categories, pure subobjects, i.e. filtered colimits of split monomorphisms, play an important role. Here we investigate pure quotients, i.e., filtered colimits of split epimorphisms. For example, in abelian, finitely accessible categories, these are precisely the cokernels of pure subobjects, and pure subobjects are precisely the kernels of pure quotients. (English)
Keyword: pure quotient
Keyword: pure subobject
Keyword: locally presentable category
Keyword: semi-abelian category
Keyword: abelian category
MSC: 18A99
MSC: 18E99
idZBL: Zbl 1080.18500
idMR: MR2086721
.
Date available: 2009-09-24T11:16:00Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127916
.
Reference: [1] J.  Adámek and J.  Rosický: Locally Presentable and Accessible Categories.Cambridge Univ. Press, Cambridge, 1994. MR 1294136
Reference: [2] D.  Bourn: Normal subobjects and abelian objects in protomodular categories.J.  Algebra 228 (2000), 143–164. Zbl 0969.18008, MR 1760960, 10.1006/jabr.1999.8249
Reference: [3] S.  Fakir: Objects algébraiquement clos et injectifs dans les catégories localement présentables.Bull. Soc. Math. France 42 (1975). MR 0401879
Reference: [4] G.  Janelidze, S.  Márki and W.  Tholen: Semi-abelian categories.168 (2002), 367–386. MR 1887164
Reference: [5] C.  Lair: Catégories modélables et catégories esquissables.Diagrammes (1981), 1–20. Zbl 0522.18008, MR 0684749
Reference: [6] M.  Makkai and R.  Paré: Accessible categories: The foundations of categorical model theory.Contemp. Math. Vol. 104, Amer. Math. Soc., Providence, 1989. MR 1031717, 10.1090/conm/104
Reference: [7] P.  Rothmaler: Purity in model theory.In: Advances in Algebra and Model Theory, M.  Droste and R.  Göbel (eds.), Gordon and Breach, , 1997, pp. 445–469. Zbl 0931.03055, MR 1687736
.

Files

Files Size Format View
CzechMathJ_54-2004-3_7.pdf 360.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo