Previous |  Up |  Next

Article

Title: Locally m-pseudoconvex topologies on locally A-pseudoconvex algebras (English)
Author: Abel, M.
Author: Arhippainen, J.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 54
Issue: 3
Year: 2004
Pages: 675-680
Summary lang: English
.
Category: math
.
Summary: Let $(A, T )$ be a locally A-pseudoconvex algebra over $\mathbb{R}$ or $\mathbb{C}$. We define a new topology $m (T)$ on $A$ which is the weakest among all m-pseudoconvex topologies on $A$ stronger than $T$. We describe a family of non-homogeneous seminorms on $A$ which defines the topology $m(T)$. (English)
Keyword: locally A-pseudoconvex algebra
Keyword: locally m-pseudoconvex algebra
MSC: 46H05
MSC: 46H20
idZBL: Zbl 1080.46518
idMR: MR2086724
.
Date available: 2009-09-24T11:16:22Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127919
.
Reference: [1] M. Abel: Gelfand-Mazur Algebras, Topological Vector Spaces, Algebras and Related Areas (Hamilton, ON).Pitman Research Notes in Math. Series  316, Longman Scientific & Technical, London, 1994, pp. 116–129. MR 1319378
Reference: [2] M. Abel and A. Kokk: Locally pseudoconvex Gelfand-Mazur algebras.Eesti Tead. Akad. Toimetised Füüs.-Mat. 37, 377–386. (Russian) MR 0985621
Reference: [3] J. Arhippainen: On functional representation of uniformly A-convex algebras.Math. Japon. 46 (1997), 509–515. Zbl 0896.46036, MR 1487302
Reference: [4] J. Arhippainen: On functional representation of commutative locally A-convex algebras.Rocky Mountain J.  Math. 30 (2000), 777–794. Zbl 1052.46037, MR 1797813, 10.1216/rmjm/1021477242
Reference: [5] A. C. Cochran: Topological algebras and Mackey topologies.Proc. Amer. Math. Soc. 30 (1971), 115–119. Zbl 0219.46036, MR 0291807, 10.1090/S0002-9939-1971-0291807-4
Reference: [6] A. C. Cochran: Representation of A-convex algebras.Proc. Amer. Math. Soc. 41 (1973), 473–479. Zbl 0272.46029, MR 0333735
Reference: [7] A. C. Cochran, R.  Keown and C. R. Williams: On class of topological algebras.Pacific J.  Math. 34 (1970), 17–25. MR 0273399, 10.2140/pjm.1970.34.17
Reference: [8] T. Husain: The Open Mapping and Closed Graph Theorems in Topological Vector Spaces.Clarendon Press, Oxford, 1965. Zbl 0124.06301, MR 0178331
Reference: [9] L. Oubbi: Topologies m-convexes dans les algebres A-convexes.Rend. Circ. Mat. Palermo XLI (1992), 397–406. Zbl 0798.46043, MR 1230587
Reference: [10] L. Oubbi: Representation of locally convex algebras.Rev. Mat. Univ. Complut. Madrid 35 (1994), 233–244. Zbl 0820.46047, MR 1297513
Reference: [11] M. Oudadess: Unité et semi-normes dans les algèbres localement convexes.Rev. Colombiana Mat. 16 (1982), 141–150. Zbl 0565.46028, MR 0685249
Reference: [12] T. W. Palmer: Banach Algebras and the General Theory of $^\ast $-Algebras.Cambridge Univ. Press, New York, 1994. Zbl 0809.46052
Reference: [13] L. Waelbroeck: Topological Vector Spaces and Algebras. Lecture Notes in Math.  230.Springer-Verlag, Berlin-New York, 1971. MR 0467234
.

Files

Files Size Format View
CzechMathJ_54-2004-3_10.pdf 320.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo