Previous |  Up |  Next

Article

Title: On connected resolving decompositions in graphs (English)
Author: Saenpholphat, Varaporn
Author: Zhang, Ping
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 54
Issue: 3
Year: 2004
Pages: 681-696
Summary lang: English
.
Category: math
.
Summary: For an ordered $k$-decomposition $\mathcal D = \lbrace G_1, G_2,\dots , G_k\rbrace $ of a connected graph $G$ and an edge $e$ of $G$, the $\mathcal D$-code of $e$ is the $k$-tuple $c_{\mathcal D}(e) = (d(e, G_1), d(e, G_2),\ldots , d(e, G_k))$, where $d(e, G_i)$ is the distance from $e$ to $G_i$. A decomposition $\mathcal D$ is resolving if every two distinct edges of $G$ have distinct $\mathcal D$-codes. The minimum $k$ for which $G$ has a resolving $k$-decomposition is its decomposition dimension $\dim _d(G)$. A resolving decomposition $\mathcal D$ of $G$ is connected if each $G_i$ is connected for $1 \le i \le k$. The minimum $k$ for which $G$ has a connected resolving $k$-decomposition is its connected decomposition number $\mathop {\mathrm cd}(G)$. Thus $2 \le \dim _d(G) \le \mathop {\mathrm cd}(G) \le m$ for every connected graph $G$ of size $m \ge 2$. All nontrivial connected graphs of size $m$ with connected decomposition number 2 or $m$ have been characterized. We present characterizations for connected graphs of size $m$ with connected decomposition number $m-1$ or $m-2$. It is shown that each pair $s, t$ of rational numbers with $ 0 < s \le t \le 1$, there is a connected graph $G$ of size $m$ such that $\dim _d(G)/m = s$ and $\mathop {\mathrm cd}(G) / m = t$. (English)
Keyword: distance
Keyword: resolving decomposition
Keyword: connected resolving decomposition
MSC: 05C12
MSC: 05C40
idZBL: Zbl 1080.05508
idMR: MR2086725
.
Date available: 2009-09-24T11:16:28Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127920
.
Reference: [1] J.  Bosak: Decompositions of Graphs.Kluwer Academic, Boston, 1990. Zbl 0701.05042, MR 1071373
Reference: [2] G.  Chartrand, D. Erwin, M. Raines and P.  Zhang: The decomposition dimension of graphs.Graphs and Combin. 17 (2001), 599–605. MR 1876570, 10.1007/PL00007252
Reference: [3] G.  Chartrand and L.  Lesniak: Graphs & Digraphs, third edition.Chapman & Hall, New York, 1996. MR 1408678
Reference: [4] H.  Enomoto and T.  Nakamigawa: On the decomposition dimension of trees.Discrete Math. 252 (2002), 219–225. MR 1907757, 10.1016/S0012-365X(01)00454-X
Reference: [5] A.  Küngen and D. B.  West: Decomposition dimension of graphs and a union-free family of sets. Preprint..
Reference: [6] M. A.  Johnson: Structure-activity maps for visualizing the graph variables arising in drug design.J.  Biopharm. Statist. 3 (1993), 203–236. Zbl 0800.92106, 10.1080/10543409308835060
Reference: [7] M. A.  Johnson: Browsable structure-activity datasets. Preprint..
Reference: [8] F.  Harary and R. A.  Melter: On the metric dimension of a graph.Ars Combin. 2 (1976), 191–195. MR 0457289
Reference: [9] B. L.  Hulme, A. W.  Shiver and P. J.  Slater: FIRE: A subroutine for fire protection network analysis.SAND 81-1261, Sandia National Laboratories, Albuquerque, 1981.
Reference: [10] B. L.  Hulme, A. W.  Shiver and P. J.  Slater: Computing minimum cost fire protection.SAND 82-0809, Sandia National Laboratories, Albuquerque, 1982.
Reference: [11] B. L.  Hulme, A. W.  Shiver and P. J.  Slater: A Boolean algebraic analysis of fire protection.Annals of Discrete Mathematics, Algebraic Structure in Operations Research, 1984, pp. 215–228. MR 0780023
Reference: [12] P. J. Slater: Leaves of trees.Congr. Numer. 14 (1975), 549–559. Zbl 0316.05102, MR 0422062
Reference: [13] P. J. Slater: Dominating and reference sets in graphs.J.  Math. Phys. Sci. 22 (1988), 445–455. MR 0966610
Reference: [14] V.  Saenpholphat and P.  Zhang: Connected resolving decompositions in graphs.Math. Bohem. 128 (2003), 121–136. MR 1995567
.

Files

Files Size Format View
CzechMathJ_54-2004-3_11.pdf 405.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo