Previous |  Up |  Next

Article

Title: On equitorsion holomorphically projective mappings of generalized Kählerian spaces (English)
Author: Stanković, Mića S.
Author: Minčić, Svetislav M.
Author: Velimirović, Ljubica S.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 54
Issue: 3
Year: 2004
Pages: 701-715
Summary lang: English
.
Category: math
.
Summary: In this paper we investigate holomorphically projective mappings of generalized Kählerian spaces. In the case of equitorsion holomorphically projective mappings of generalized Kählerian spaces we obtain five invariant geometric objects for these mappings. (English)
Keyword: Generalized Riemannian space
Keyword: Kählerian space
Keyword: generalized Kählerian space
Keyword: holomorphically projective mapping
Keyword: equitorsion holomorphically projective mapping
Keyword: holomorphically projective parameter
Keyword: holomorphically projective tensor
MSC: 53B05
MSC: 53B35
idZBL: Zbl 1080.53016
idMR: MR2086727
.
Date available: 2009-09-24T11:16:43Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127922
.
Reference: [bib-1] L. P. Eisenhart: Generalized Riemannian spaces I.Proc. Nat. Acad. Sci. USA 37 (1951), 311–315. MR 0043530, 10.1073/pnas.37.5.311
Reference: [bib-2] J. Mikeš, G. A. Starko: $K$-koncircular vector fields and holomorphically projective mappings on Kählerian spaces.Rend. del Circolo di Palermo 46 (1997), 123–127. MR 1469028
Reference: [bib-3] S. M. Minčić: Ricci identities in the space of non-symmetric affine connection.Mat. Vesnik 10(25) (1973), 161–172. MR 0341310
Reference: [bib-4] S. M. Minčić: New commutation formulas in the non-symetric affine connection space.Publ. Inst. Math. (Beograd) (N. S) 22(36) (1977), 189–199. MR 0482552
Reference: [bib-5] S. M. Minčić and M. S. Stanković: Equitorsion geodesic mappings of generalized Riemannian spaces.Publ. Inst. Math. (Beograd) (N. S.) 61(75) (1997), 97–104. MR 1472941
Reference: [bib-6] S. M. Minčić: Independent curvature tensors and pseudotensors of spaces with non-symmetric affine connection.Coll. Math. Soc. János Bolyai 31 (1979), 445–460. MR 0706937
Reference: [bib-7] S. M. Minčić and M. S. Stanković: Generalized Kählerian spaces (submitted)..
Reference: [bib-8] T. Otsuki and Y. Tasiro: On curves in Kählerian spaces.Math. J. Okayama Univ. 4 (1954), 57–78. MR 0066024
Reference: [bib-9] M. Prvanović: A note on holomorphically projective transformations of the Kähler space in a locally product Riemannian space.Tensor 35 (1981), 99–104. MR 0614141
Reference: [bib-10] N. S. Sinyukov: Geodesic Mappings of Riemannian Spaces.Nauka, Moscow, 1979. (Russian) Zbl 0637.53020, MR 0552022
Reference: [bib-11] K. Yano: Differential Geometry of Complex and Almost Complex Spaces.Pergamon Press, New York, 1965. MR 0187181
Reference: [bib-12] K. Yano: On complex conformal connections.Kodai Math. Sem. Rep. 26 (1975), 137–151. Zbl 0302.53013, MR 0377736, 10.2996/kmj/1138846996
.

Files

Files Size Format View
CzechMathJ_54-2004-3_13.pdf 345.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo