Title:
|
Approximation by $p$-Faber-Laurent rational functions in the weighted Lebesgue spaces (English) |
Author:
|
Israfilov, Daniyal M. |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
54 |
Issue:
|
3 |
Year:
|
2004 |
Pages:
|
751-765 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $L\subset C$ be a regular Jordan curve. In this work, the approximation properties of the $p$-Faber-Laurent rational series expansions in the $\omega $ weighted Lebesgue spaces $L^p(L,\omega )$ are studied. Under some restrictive conditions upon the weight functions the degree of this approximation by a $k$th integral modulus of continuity in $L^p(L,\omega )$ spaces is estimated. (English) |
Keyword:
|
Faber polynomial |
Keyword:
|
Faber series |
Keyword:
|
weighted Lebesgue space |
Keyword:
|
weighted Smirnov space |
Keyword:
|
$k$-th modulus of continuity |
MSC:
|
30E10 |
MSC:
|
41A10 |
MSC:
|
41A25 |
MSC:
|
41A30 |
MSC:
|
41A58 |
idZBL:
|
Zbl 1080.41500 |
idMR:
|
MR2086731 |
. |
Date available:
|
2009-09-24T11:17:13Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127926 |
. |
Reference:
|
[1] S. Y. Alper: Approximation in the mean of analytic functions of class $E^p$.In: Investigations on the Modern Problems of the Function Theory of a Complex Variable, Gos. Izdat. Fiz.-Mat. Lit., Moscow, 1960, pp. 272–286. (Russian) MR 0116101 |
Reference:
|
[2] J. E. Andersson: On the degree of polynomial approximation in $E^p(D)$.J. Approx. Theory 19 (1977), 61–68. MR 0614155, 10.1016/0021-9045(77)90029-6 |
Reference:
|
[3] A. Çavuş and D. M. Israfilov: Approximation by Faber-Laurent rational functions in the mean of functions of the class $L_{p}(\Gamma ) $ with $1<p<\infty $.Approximation Theory App. 11 (1995), 105–118. MR 1341424 |
Reference:
|
[4] G. David: Operateurs integraux singulers sur certaines courbes du plan complexe.Ann. Sci. Ecol. Norm. Super. 4 (1984), 157–189. MR 0744071, 10.24033/asens.1469 |
Reference:
|
[5] P. L. Duren: Theory of $H^p$-Spaces.Academic Press, , 1970. MR 0268655 |
Reference:
|
[6] E. M. Dyn’kin and B. P. Osilenker: Weighted estimates for singular integrals and their applications.In: Mathematical analysis, Vol. 21, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1983, pp. 42–129. (Russian) MR 0736522 |
Reference:
|
[7] D. Gaier: Lectures on Complex Approximation.Birkhäuser-Verlag, Boston-Stuttgart, 1987. Zbl 0612.30003, MR 0894920 |
Reference:
|
[8] G. M. Golusin: Geometric Theory of Functions of a Complex Variable.Translation of Mathematical Monographs, Vol. 26, AMS, 1969. MR 0247039 |
Reference:
|
[9] E. A. Haciyeva: Investigation of the properties of functions with quasimonotone Fourier coefficients in generalized Nikolsky-Besov spaces. Author’s summary of candidates dissertation.(1986), Tbilisi. (Russian) |
Reference:
|
[10] I. I. Ibragimov and D. I. Mamedhanov: A constructive characterization of a certain class of functions.Dokl. Akad. Nauk SSSR 223 (1975), 35–37. MR 0470218 |
Reference:
|
[11] D. M. Israfilov: Approximate properties of the generalized Faber series in an integral metric.Izv. Akad. Nauk Az. SSR, Ser. Fiz.-Tekh. Math. Nauk 2 (1987), 10–14. (Russian) Zbl 0655.30023, MR 0946314 |
Reference:
|
[12] D. M. Israfilov: Approximation by $p$-Faber polynomials in the weighted Smirnov class $E^p(G,\omega )$ and the Bieberbach polynomials.Constr. Approx. 17 (2001), 335–351. MR 1828916, 10.1007/s003650010030 |
Reference:
|
[13] V. M. Kokilashvili: A direct theorem on mean approximation of analytic functions by polynomials.Soviet Math. Dokl. 10 (1969), 411–414. Zbl 0212.09901 |
Reference:
|
[14] A. I. Markushevich: Theory of Analytic Functions, Vol. 2.Izdatelstvo Nauka, Moscow, 1968. |
Reference:
|
[15] B. Muckenhoupt: Weighted norm inequalites for Hardy maximal functions.Trans. Amer. Math. Soc. 165 (1972), 207–226. MR 0293384, 10.1090/S0002-9947-1972-0293384-6 |
Reference:
|
[16] P. K. Suetin: Series of Faber Polynomials.Nauka, Moscow, 1984; Cordon and Breach Publishers, 1998. Zbl 0936.30026, MR 0774773 |
Reference:
|
[17] J. L. Walsh and H. G. Russel: Integrated continuity conditions and degree of approximation by polynomials or by bounded analytic functions.Trans. Amer. Math. Soc. 92 (1959), 355–370. MR 0108595, 10.1090/S0002-9947-1959-0108595-3 |
Reference:
|
[18] M. Wehrens: Best approximation on the unit sphere in $R^n$.Funct. Anal. and Approx. Proc. Conf. Oberwolfach. Aug. 9-16, 1980, Basel, 1981, pp. 233–245. Zbl 0529.41024, MR 0650278 |
. |