Title:
|
Exponential expansiveness and complete admissibility for evolution families (English) |
Author:
|
Megan, Mihail |
Author:
|
Sasu, Bogdan |
Author:
|
Sasu, Adina Luminiţa |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
54 |
Issue:
|
3 |
Year:
|
2004 |
Pages:
|
739-749 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Connections between uniform exponential expansiveness and complete admissibility of the pair $(c_0({\mathbb N}, X),c_0({\mathbb N}, X))$ are studied. A discrete version for a theorem due to Van Minh, Räbiger and Schnaubelt is presented. Equivalent characterizations of Perron type for uniform exponential expansiveness of evolution families in terms of complete admissibility are given. (English) |
Keyword:
|
evolution family |
Keyword:
|
uniform exponential expansiveness |
Keyword:
|
complete admissibility |
MSC:
|
34D05 |
MSC:
|
34E05 |
MSC:
|
34G99 |
idZBL:
|
Zbl 1080.34546 |
idMR:
|
MR2086730 |
. |
Date available:
|
2009-09-24T11:17:06Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127925 |
. |
Reference:
|
[1] A. Ben-Artzi, I. Gohberg and M. A. Kaashoek: Invertibility and dichotomy of differential operators on the half-line.J. Dynam. Differential Equations 5 (1993), 1–36. MR 1205452, 10.1007/BF01063733 |
Reference:
|
[2] C. Chicone and Y. Latushkin: Evolution Semigroups in Dynamical Systems and Differential Equations. Math. Surveys and Monographs, Vol. 70.Amer. Math. Soc., , 1999. MR 1707332, 10.1090/surv/070 |
Reference:
|
[3] S. N. Chow and H. Leiva: Existence and roughness of the exponential dichotomy for linear skew-product semiflows in Banach spaces.J. Differential Equations 120 (1995), 429–477. MR 1347351, 10.1006/jdeq.1995.1117 |
Reference:
|
[4] J. Daleckii and M. G. Krein: Stability of Solutions of Differential Equations in Banach Spaces. Trans. Math. Monographs 43.AMS, Providence, 1974. MR 0352639 |
Reference:
|
[5] D. Henry: Geometric Theory of Semilinear Parabolic Equations.Springer-Verlag, New York, 1981. Zbl 0456.35001, MR 0610244 |
Reference:
|
[6] Y. Latushkin and T. Randolph: Dichotomy of differential equations on Banach spaces and algebra of weighted translation operators.Integral Equations Operator Theory 23 (1995), 472–500. MR 1361056, 10.1007/BF01203919 |
Reference:
|
[7] Y. Latushkin and R. Schnaubelt: Evolution semigroups, translation algebras and exponential dichotomy of cocycles.J. Differential Equations 159 (1999), 321–369. MR 1730724, 10.1006/jdeq.1999.3668 |
Reference:
|
[8] M. Megan, A. L. Sasu and B. Sasu: On uniform exponential stability of periodic evolution operators in Banach spaces.Acta Math. Univ. Comenian. 69 (2000), 97–106. MR 1796790 |
Reference:
|
[9] M. Megan, A. L. Sasu and B. Sasu: On uniform exponential stability of linear skew-product semiflows in Banach spaces.Bull. Belg. Math. Soc. Simon Stevin 9 (2002), 143–154. MR 1905653, 10.36045/bbms/1102715145 |
Reference:
|
[10] M. Megan, A. L. Sasu and B. Sasu: Discrete admissibility and exponential dichotomy for evolution families.Discrete Contin. Dynam. Systems 9 (2003), 383–397. MR 1952381 |
Reference:
|
[11] M. Megan, B. Sasu and A. L. Sasu: On nonuniform exponential dichotomy of evolution operators in Banach spaces.Integral Equations Operator Theory 44 (2002), 71–78. MR 1913424, 10.1007/BF01197861 |
Reference:
|
[12] N. Van Minh, F. Räbiger and R. Schnaubelt: Exponential stability, exponential expansiveness and exponential dichotomy of evolution equations on the half line.Integral Equations Operator Theory 32 (1998), 332–353. MR 1652689, 10.1007/BF01203774 |
Reference:
|
[13] A. Pazy: Semigroups of Linear Operators and Applications to Partial Differential Equations.Springer-Verlag, Berlin-Heidelberg-New York, 1983. Zbl 0516.47023, MR 0710486 |
Reference:
|
[14] V. A. Pliss and G. R. Sell: Robustness of exponential dichotomies in infinite-dimensional dynamical systems.J. Dynam. Differential Equations 3 (1999), 471–513. MR 1693858 |
. |