Previous |  Up |  Next

Article

Title: Exponential expansiveness and complete admissibility for evolution families (English)
Author: Megan, Mihail
Author: Sasu, Bogdan
Author: Sasu, Adina Luminiţa
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 54
Issue: 3
Year: 2004
Pages: 739-749
Summary lang: English
.
Category: math
.
Summary: Connections between uniform exponential expansiveness and complete admissibility of the pair $(c_0({\mathbb N}, X),c_0({\mathbb N}, X))$ are studied. A discrete version for a theorem due to Van Minh, Räbiger and Schnaubelt is presented. Equivalent characterizations of Perron type for uniform exponential expansiveness of evolution families in terms of complete admissibility are given. (English)
Keyword: evolution family
Keyword: uniform exponential expansiveness
Keyword: complete admissibility
MSC: 34D05
MSC: 34E05
MSC: 34G99
idZBL: Zbl 1080.34546
idMR: MR2086730
.
Date available: 2009-09-24T11:17:06Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127925
.
Reference: [1] A. Ben-Artzi, I.  Gohberg and M. A. Kaashoek: Invertibility and dichotomy of differential operators on the half-line.J.  Dynam. Differential Equations 5 (1993), 1–36. MR 1205452, 10.1007/BF01063733
Reference: [2] C.  Chicone and Y. Latushkin: Evolution Semigroups in Dynamical Systems and Differential Equations. Math. Surveys and Monographs, Vol. 70.Amer. Math. Soc., , 1999. MR 1707332, 10.1090/surv/070
Reference: [3] S. N. Chow and H.  Leiva: Existence and roughness of the exponential dichotomy for linear skew-product semiflows in Banach spaces.J. Differential Equations 120 (1995), 429–477. MR 1347351, 10.1006/jdeq.1995.1117
Reference: [4] J. Daleckii and M. G. Krein: Stability of Solutions of Differential Equations in Banach Spaces. Trans. Math. Monographs 43.AMS, Providence, 1974. MR 0352639
Reference: [5] D. Henry: Geometric Theory of Semilinear Parabolic Equations.Springer-Verlag, New York, 1981. Zbl 0456.35001, MR 0610244
Reference: [6] Y.  Latushkin and T.  Randolph: Dichotomy of differential equations on Banach spaces and algebra of weighted translation operators.Integral Equations Operator Theory 23 (1995), 472–500. MR 1361056, 10.1007/BF01203919
Reference: [7] Y. Latushkin and R. Schnaubelt: Evolution semigroups, translation algebras and exponential dichotomy of cocycles.J.  Differential Equations 159 (1999), 321–369. MR 1730724, 10.1006/jdeq.1999.3668
Reference: [8] M. Megan, A. L. Sasu and B.  Sasu: On uniform exponential stability of periodic evolution operators in Banach spaces.Acta Math. Univ. Comenian. 69 (2000), 97–106. MR 1796790
Reference: [9] M.  Megan, A. L.  Sasu and B. Sasu: On uniform exponential stability of linear skew-product semiflows in Banach spaces.Bull. Belg. Math. Soc. Simon Stevin 9 (2002), 143–154. MR 1905653, 10.36045/bbms/1102715145
Reference: [10] M.  Megan, A. L. Sasu and B. Sasu: Discrete admissibility and exponential dichotomy for evolution families.Discrete Contin. Dynam. Systems 9 (2003), 383–397. MR 1952381
Reference: [11] M.  Megan, B.  Sasu and A. L. Sasu: On nonuniform exponential dichotomy of evolution operators in Banach spaces.Integral Equations Operator Theory 44 (2002), 71–78. MR 1913424, 10.1007/BF01197861
Reference: [12] N. Van Minh, F.  Räbiger and R.  Schnaubelt: Exponential stability, exponential expansiveness and exponential dichotomy of evolution equations on the half line.Integral Equations Operator Theory 32 (1998), 332–353. MR 1652689, 10.1007/BF01203774
Reference: [13] A.  Pazy: Semigroups of Linear Operators and Applications to Partial Differential Equations.Springer-Verlag, Berlin-Heidelberg-New York, 1983. Zbl 0516.47023, MR 0710486
Reference: [14] V. A. Pliss and G. R.  Sell: Robustness of exponential dichotomies in infinite-dimensional dynamical systems.J.  Dynam. Differential Equations 3 (1999), 471–513. MR 1693858
.

Files

Files Size Format View
CzechMathJ_54-2004-3_16.pdf 341.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo