Previous |  Up |  Next

Article

Title: An improvement of an inequality of Fiedler leading to a new conjecture on nonnegative matrices (English)
Author: Goldberger, Assaf
Author: Neumann, Michael
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 54
Issue: 3
Year: 2004
Pages: 773-780
Summary lang: English
.
Category: math
.
Summary: Suppose that $A$ is an $n\times n$ nonnegative matrix whose eigenvalues are $\lambda = \rho (A), \lambda _2,\ldots , \lambda _n$. Fiedler and others have shown that $\det (\lambda I - A) \le \lambda ^n - \rho ^n$, for all $\lambda > \rho $, with equality for any such $\lambda $ if and only if $A$ is the simple cycle matrix. Let $a_i$ be the signed sum of the determinants of the principal submatrices of $A$ of order $i\times i$, $i = 1,\ldots ,n - 1$. We use similar techniques to Fiedler to show that Fiedler’s inequality can be strengthened to: $\det (\lambda I - A) + \sum _{i = 1}^{n - 1} \rho ^{n - 2i}|a_i|(\lambda - \rho )^i \le \lambda ^n -\rho ^n$, for all $\lambda \ge \rho $. We use this inequality to derive the inequality that: $\prod _{2}^{n}(\rho - \lambda _i) \le \rho ^{n - 2}\sum _{i = 2}^{n}(\rho - \lambda _i)$. In the spirit of a celebrated conjecture due to Boyle-Handelman, this inequality inspires us to conjecture the following inequality on the nonzero eigenvalues of $A$: If $\lambda _1 = \rho (A),\lambda _2,\ldots , \lambda _k$ are (all) the nonzero eigenvalues of $A$, then $\prod _{2}^{k}(\rho - \lambda _i) \le \rho ^{k-2}\sum _{i = 2}^{k}(\rho -\lambda )$. We prove this conjecture for the case when the spectrum of $A$ is real. (English)
Keyword: nonnegative matrices
Keyword: M-matrices
Keyword: determinants
MSC: 15A15
MSC: 15A48
idZBL: Zbl 1080.15502
idMR: MR2086733
.
Date available: 2009-09-24T11:17:29Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127928
.
Reference: [1] S. Ambikkumar and S. W. Drury: Some remarks on a conjecture of Boyle and Handelman.Lin. Alg. Appl. 264 (1997), 63–99. MR 1465857, 10.1016/S0024-3795(96)00402-8
Reference: [2] J. Ashley.: On the Perron-Frobenius eigenvector for nonnegative integral matrices whose largest eigenvalue is integral.Lin. Alg. Appl. 94 (1987), 103–108. Zbl 0622.15012, MR 0902070, 10.1016/0024-3795(87)90081-4
Reference: [3] A. Berman and R. J. Plemmons: Nonnegative Matrices in the Mathematical Sciences.SIAM, Philadelphia, 1994. MR 1298430
Reference: [4] M. Boyle and D. Handelman: The spectra of nonnegative matrices via symbolic dynamics.Annals of Math. 133 (1991), 249–316. MR 1097240, 10.2307/2944339
Reference: [5] M. Fiedler: Untitled private communication.1982.
Reference: [6] J. Keilson and G. Styan: Markov chains and M-matrices: Inequalities and equalities.J.  Math. Anal. Appl. 41 (1973), 439–459. MR 0314873, 10.1016/0022-247X(73)90219-9
Reference: [7] I. Koltracht, M. Neumann and D. Xiao: On a question of Boyle and Handelman concerning eigenvalues of nonnegative matrices.Lin. Multilin. Alg. 36 (1993), 125–140. MR 1308915, 10.1080/03081089308818282
.

Files

Files Size Format View
CzechMathJ_54-2004-3_19.pdf 340.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo