Title:
|
An improvement of an inequality of Fiedler leading to a new conjecture on nonnegative matrices (English) |
Author:
|
Goldberger, Assaf |
Author:
|
Neumann, Michael |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
54 |
Issue:
|
3 |
Year:
|
2004 |
Pages:
|
773-780 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Suppose that $A$ is an $n\times n$ nonnegative matrix whose eigenvalues are $\lambda = \rho (A), \lambda _2,\ldots , \lambda _n$. Fiedler and others have shown that $\det (\lambda I - A) \le \lambda ^n - \rho ^n$, for all $\lambda > \rho $, with equality for any such $\lambda $ if and only if $A$ is the simple cycle matrix. Let $a_i$ be the signed sum of the determinants of the principal submatrices of $A$ of order $i\times i$, $i = 1,\ldots ,n - 1$. We use similar techniques to Fiedler to show that Fiedler’s inequality can be strengthened to: $\det (\lambda I - A) + \sum _{i = 1}^{n - 1} \rho ^{n - 2i}|a_i|(\lambda - \rho )^i \le \lambda ^n -\rho ^n$, for all $\lambda \ge \rho $. We use this inequality to derive the inequality that: $\prod _{2}^{n}(\rho - \lambda _i) \le \rho ^{n - 2}\sum _{i = 2}^{n}(\rho - \lambda _i)$. In the spirit of a celebrated conjecture due to Boyle-Handelman, this inequality inspires us to conjecture the following inequality on the nonzero eigenvalues of $A$: If $\lambda _1 = \rho (A),\lambda _2,\ldots , \lambda _k$ are (all) the nonzero eigenvalues of $A$, then $\prod _{2}^{k}(\rho - \lambda _i) \le \rho ^{k-2}\sum _{i = 2}^{k}(\rho -\lambda )$. We prove this conjecture for the case when the spectrum of $A$ is real. (English) |
Keyword:
|
nonnegative matrices |
Keyword:
|
M-matrices |
Keyword:
|
determinants |
MSC:
|
15A15 |
MSC:
|
15A48 |
idZBL:
|
Zbl 1080.15502 |
idMR:
|
MR2086733 |
. |
Date available:
|
2009-09-24T11:17:29Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127928 |
. |
Reference:
|
[1] S. Ambikkumar and S. W. Drury: Some remarks on a conjecture of Boyle and Handelman.Lin. Alg. Appl. 264 (1997), 63–99. MR 1465857, 10.1016/S0024-3795(96)00402-8 |
Reference:
|
[2] J. Ashley.: On the Perron-Frobenius eigenvector for nonnegative integral matrices whose largest eigenvalue is integral.Lin. Alg. Appl. 94 (1987), 103–108. Zbl 0622.15012, MR 0902070, 10.1016/0024-3795(87)90081-4 |
Reference:
|
[3] A. Berman and R. J. Plemmons: Nonnegative Matrices in the Mathematical Sciences.SIAM, Philadelphia, 1994. MR 1298430 |
Reference:
|
[4] M. Boyle and D. Handelman: The spectra of nonnegative matrices via symbolic dynamics.Annals of Math. 133 (1991), 249–316. MR 1097240, 10.2307/2944339 |
Reference:
|
[5] M. Fiedler: Untitled private communication.1982. |
Reference:
|
[6] J. Keilson and G. Styan: Markov chains and M-matrices: Inequalities and equalities.J. Math. Anal. Appl. 41 (1973), 439–459. MR 0314873, 10.1016/0022-247X(73)90219-9 |
Reference:
|
[7] I. Koltracht, M. Neumann and D. Xiao: On a question of Boyle and Handelman concerning eigenvalues of nonnegative matrices.Lin. Multilin. Alg. 36 (1993), 125–140. MR 1308915, 10.1080/03081089308818282 |
. |