Previous |  Up |  Next

Article

Title: On prime modules over pullback rings (English)
Author: Atani, Shahabaddin Ebrahimi
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 54
Issue: 3
Year: 2004
Pages: 781-789
Summary lang: English
.
Category: math
.
Summary: First, we give a complete description of the indecomposable prime modules over a Dedekind domain. Second, if $R$ is the pullback, in the sense of [9], of two local Dedekind domains then we classify indecomposable prime $R$-modules and establish a connection between the prime modules and the pure-injective modules (also representable modules) over such rings. (English)
Keyword: indecomposable prime modules
Keyword: pullback rings
Keyword: separated modules
MSC: 13C05
MSC: 13C11
MSC: 13C13
MSC: 13F05
MSC: 16D70
idZBL: Zbl 1080.13507
idMR: MR2086734
.
Date available: 2009-09-24T11:17:36Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127929
.
Reference: [1] J. Dauns: Prime modules.Reine angew Math. 298 (1978), 156–181. Zbl 0365.16002, MR 0498715
Reference: [2] J. Dauns: ARRAY(0xa1e66e8).1980, pp. 301–303. MR 0584616
Reference: [3] J. Dauns: Modules and Rings.Cambridge University Press, Cambridge, 1994. Zbl 0817.16001, MR 1301329
Reference: [4] S. Ebrahimi Atani: On pure-injective modules over pullback rings.Comm. Algebra 28 (2000), 4037–4069. Zbl 0960.16002, MR 1772008, 10.1080/00927870008827074
Reference: [5] S. Ebrahimi Atani: I-Torsion-free modules over pullback rings.Honam Math. J. 22 (2000), 1–7. Zbl 0973.16006, MR 1779194
Reference: [6] S. Ebrahimi Atani: On secondary modules over Dedekind domains.South-east Asian Bulletin 25 (2001), 1–6. MR 1832737, 10.1007/s10012-001-0001-9
Reference: [7] S. Ebrahimi Atani: On secondary modules over pullback rings.Comm. Algebra 30 (2002), 2675–2685. Zbl 1011.13004, MR 1908232, 10.1081/AGB-120003982
Reference: [8] L. Fuchs and L. Salce: Modules over Valuation Domains.Lecture Notes in Pure and Applied Mathematics, 1985. MR 0786121
Reference: [9] L. Levy: Modules over pullbacks and subdirect sums.J. Algebra 71 (1981), 50–61. Zbl 0508.16008, MR 0627425, 10.1016/0021-8693(81)90106-X
Reference: [10] L. Levy: Mixed modules over $\mathbb{Z}G$, $G$ cyclic of prime order, and over related Dedekind pullbacks.J. Algebra 71 (1981), 62–114. MR 0627426, 10.1016/0021-8693(81)90107-1
Reference: [11] L. Levy: Modules over Dedekind-like rings.J. Algebra 93 (1981), 1–116. MR 0780485
Reference: [12] C. P. Lu: Prime submodules of modules.Comm. Univ. Sancti. Paulli 33 (1984), 61–69. Zbl 0575.13005
Reference: [13] C. P. Lu: Spectra of modules.Comm. Algebra 23 (1995), 3741–3752. Zbl 0853.13011, MR 1348262, 10.1080/00927879508825430
Reference: [14] I. G. Macdonald: Secondary representation of modules over a commutative ring.Symposia Matematica 11 (Istituto Nazionale di alta Matematica), Roma, 1973, pp. 23–43. Zbl 0271.13001, MR 0342506
Reference: [15] M. Prest: Model Theory and Modules. London Math. Soc. Lecture Note Series.Cambridge University Press, 1988. MR 0933092
Reference: [16] Y. Tiras, A. Tercan and A. Harmanci: Prime modules.Honam Math. J. 18 (1996), 5–15. MR 1402357
Reference: [17] S. Yassemi: The dual notion of prime submodules.Arch. Math. 37 (2001), 273–278. Zbl 1090.13005, MR 1879449
.

Files

Files Size Format View
CzechMathJ_54-2004-3_20.pdf 312.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo