Title:
|
A note on ultrametric matrices (English) |
Author:
|
Zhang, Xiao-Dong |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
54 |
Issue:
|
4 |
Year:
|
2004 |
Pages:
|
929-940 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
It is proved in this paper that special generalized ultrametric and special $\mathcal U$ matrices are, in a sense, extremal matrices in the boundary of the set of generalized ultrametric and $ \mathcal U$ matrices, respectively. Moreover, we present a new class of inverse $M$-matrices which generalizes the class of $\mathcal U$ matrices. (English) |
Keyword:
|
generalized ultrametric matrix |
Keyword:
|
$ \mathcal U$ matrix |
Keyword:
|
weighted graph |
Keyword:
|
inverse $M$-matrix |
MSC:
|
05C50 |
MSC:
|
15A09 |
MSC:
|
15A48 |
MSC:
|
15A57 |
idZBL:
|
Zbl 1080.15500 |
idMR:
|
MR2100005 |
. |
Date available:
|
2009-09-24T11:18:59Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127941 |
. |
Reference:
|
[1] A. Berman and R. J. Plemmons: Nonnegative Matrices in the Mathematical Sciences.Academic, 1979; SIAM, 1994. MR 1298430 |
Reference:
|
[2] C. R. Johnson: Inverse $M$-matrices.Linear Algebra Appl. 47 (1982), 159–216. Zbl 0488.15011, MR 0672744 |
Reference:
|
[3] C. Dellacherie, S. Martínez and J. S. Martín: Ultrametric matrices and induced Markov chains.Adv. in Appl. Math. 17 (1996), 169–183. MR 1390573, 10.1006/aama.1996.0009 |
Reference:
|
[4] C. Dellacherie, S. Martínez and J. S. Martín: Description of the sub-Markov kernel associated to generalized ultrametric matrices: an algorithmic approach.Linear Algebra Appl. 318 (2000), 1–21. MR 1787220 |
Reference:
|
[5] M. Fiedler: Some characterizations of symmmetric inverse $M$-matrices.Linear Algebra Appl. 275–276 (1998), 179–187. MR 1628388 |
Reference:
|
[6] M. Fiedler: Special ultrametric matrices and graphs.SIAM J. Matrix Anal. Appl. (electronic) 22 (2000), 106–113. Zbl 0967.15013, MR 1779719, 10.1137/S0895479899350988 |
Reference:
|
[7] M. Fiedler, C R. Johnson and T. L Markham: Notes on inverse $M$-matrices.Linear Algebra Appl. 91 (1987), 75–81. MR 0888480, 10.1016/0024-3795(87)90061-9 |
Reference:
|
[8] S. Martínez, G. Michon and J. S. Martín: Inverses of ultrametric matrices are of Stieltjes types.SIAM J. Matrix Anal. Appl. 15 (1994), 98–106. MR 1257619, 10.1137/S0895479891217011 |
Reference:
|
[9] J. J. McDonald, R. Nabben, M. Neumann, H. Schneider and M. J. Tsatsomeros: Inverse tridiagonal $Z$-matrices.Linear and Multilinear Algebra 45 (1998), 75–97. MR 1665619 |
Reference:
|
[10] J. J. McDonald, M. Neumann, H. Schneider and M. J. Tsatsomeros: Inverse $M$-matrix inequalities and generalized ultrametric matrices.Linear Algebra Appl. 220 (1995), 329–349. MR 1334583 |
Reference:
|
[11] R. Nabben: A class of inverse $M$-matrices.Electron. J. Linear Algebra 7 (2000), 53–58. Zbl 0956.15012, MR 1766201 |
Reference:
|
[12] R. Nabben and R. S. Varga: A linear algebra proof that the inverses of strictly ultrametric matrix is a strictly diagonally dominant are of Stieljes types.SIAM J. Matrix Anal. Appl. 15 (1994), 107–113. MR 1257620, 10.1137/S0895479892228237 |
Reference:
|
[13] R. Nabben and R. S. Varga: Generalized ultrametric matrices—a class of inverse $M$-matrices.Linear Algebra Appl. 220 (1995), 365–390. MR 1334586 |
Reference:
|
[14] M. Neumann: A conjecture concerning the Hadamard product of inverse of $M$-matrices.Linear Algebra Appl. 285 (1995), 277–290. MR 1653539 |
Reference:
|
[15] R. A. Willoughby: The inverse $M$-matrix problem.Linear Algebra Appl. 18 (1977), 75–94. Zbl 0355.15006, MR 0472874, 10.1016/0024-3795(77)90081-7 |
. |