Previous |  Up |  Next

Article

Title: A note on the oscillation of second order differential equations (English)
Author: Abdullah, Hishyar Kh.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 54
Issue: 4
Year: 2004
Pages: 949-954
Summary lang: English
.
Category: math
.
Summary: We give a sufficient condition for the oscillation of linear homogeneous second order differential equation $y^{\prime \prime }+p(x)y^{\prime }+q(x)y=0$, where $p(x), q(x)\in C[\alpha ,\infty )$ and $\alpha $ is positive real number. (English)
Keyword: oscillatory
Keyword: second order differential equations
MSC: 34A30
MSC: 34C10
idZBL: Zbl 1080.34506
idMR: MR2100007
.
Date available: 2009-09-24T11:19:12Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127943
.
Reference: [1] A. Sauer: A note of zero-sequences of solutions of $f^{\prime \prime }+Af=0$.Amer. Math. Soc. 125 (1997), 1143–1147. MR 1377005, 10.1090/S0002-9939-97-03819-7
Reference: [2] G. J. Butler, I. H. Erbe and A. B. Mingarelli: Riccati techniques and variational principles in oscillation theory for linear systems.Trans. Amer. Math. Soc. 303 (1987), 263–282. MR 0896022, 10.1090/S0002-9947-1987-0896022-5
Reference: [3] H.  Erbe, Qinghai Kong and Shigui Ruan: Kamenev type theorems for 2nd order matrix differential systems.Proc. Amer. Math. Soc. 117 (1993), 957–962. MR 1154244
Reference: [4] E.  Hille: Non-oscillation theorems.Trans. Amer. Math. Soc. 64 (1948), 234–252. Zbl 0031.35402, MR 0027925, 10.1090/S0002-9947-1948-0027925-7
Reference: [5] I.  Kamenev: Integral criterion for oscillation of linear differential equations of second order.Zametki 23 (1978), 136-138. Zbl 0408.34031, MR 0486798
Reference: [6] J. W. Macki and J. S. W.  Wong: Oscillation theorems for linear second order differential equations.Proc. Amer. Math. Soc. 20 (1969), 67–72. MR 0235202, 10.1090/S0002-9939-1969-0235202-3
Reference: [7] A. B. Mingarelli: On a conjecture for oscillation of second order ordinary differential systems.Proc. Amer. Math. Soc. 82 (1981), 592–598. Zbl 0487.34030, MR 0614884
Reference: [8] Ch. G.  Philos and I. K. Purnaras: Oscillations in superliner differential equations of second order.J. Math. Anal. Appl. 165 (1992), 1–11. MR 1151058, 10.1016/0022-247X(92)90065-L
Reference: [9] D.  Willett: On the oscillatory behavior of the solution of second order linear differential equations.Ann. Polon. Math. 21 (1969), 175–194. MR 0249723, 10.4064/ap-21-2-175-194
Reference: [10] J.  Yan: A note on an oscillation criterion for an equation with damped term.Proc. Amer. Math. Soc. 90 (1984), 277–280. Zbl 0542.34028, MR 0727249, 10.1090/S0002-9939-1984-0727249-3
.

Files

Files Size Format View
CzechMathJ_54-2004-4_11.pdf 277.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo