Previous |  Up |  Next

Article

Title: Graceful signed graphs: II. The case of signed cycles with connected negative sections (English)
Author: Acharya, Mukti
Author: Singh, Tarkeshwar
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 55
Issue: 1
Year: 2005
Pages: 25-40
Summary lang: English
.
Category: math
.
Summary: In our earlier paper [9], generalizing the well known notion of graceful graphs, a $(p,m,n)$-signed graph $S$ of order $p$, with $m$ positive edges and $n$ negative edges, is called graceful if there exists an injective function $f$ that assigns to its $p$ vertices integers $0,1,\dots ,q = m+n$ such that when to each edge $uv$ of $S$ one assigns the absolute difference $|f(u) - f(v)|$ the set of integers received by the positive edges of $S$ is $\lbrace 1,2,\dots ,m\rbrace $ and the set of integers received by the negative edges of $S$ is $\lbrace 1,2,\dots ,n\rbrace $. Considering the conjecture therein that all signed cycles $Z_k$, of admissible length $ k \ge 3$ and signed structures, are graceful, we establish in this paper its truth for all possible signed cycles of lengths $ 0,2$ or $3\hspace{4.44443pt}(\@mod \; 4)$ in which the set of negative edges forms a connected subsigraph. (English)
Keyword: graceful signed graphs
Keyword: signed cycles
MSC: 05C22
MSC: 05C78
idZBL: Zbl 1081.05097
idMR: MR2121654
.
Date available: 2009-09-24T11:20:39Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127957
.
Related article: http://dml.cz/handle/10338.dmlcz/127888
.
Reference: [1] R. P.  Abelson and M. J.  Rosenberg: Symbolic psychology: A model of attitudinal cognition.Behav. Sci. 3 (1958), 1–13. 10.1002/bs.3830030102
Reference: [2] B. D. Acharya: Spectral criterion for cycle balance in networks.J.  Graph Theory 4 (1981), 1–11. MR 0558448
Reference: [3] B. D. Acharya: Construction of certain infinite families of graceful graphs.Def. Sci. J. 32 (1982), 231–236. Zbl 0516.05055, 10.14429/dsj.32.6301
Reference: [4] B. D.  Acharya: Are all polyominoes arbitrarily graceful? In: Graph Theory Singapore 1983.Lecture note in Mathematics, No. 1073, K. M.  Koh, Y. P. Yap (eds.), Springer-Verlag, Berlin, 1984, pp. 205–211. MR 0761019
Reference: [5] B. D.  Acharya and M.  Acharya: New algebraic models of social systems.Indian J.  Pure Appl. Math. 17 (1986), 150–168. MR 0830552
Reference: [6] B. D.  Acharya and S. M.  Hegde: Arithmetic graphs.J.  Graph Theory 14 (1990), 275–299. MR 1060857, 10.1002/jgt.3190140302
Reference: [7] B. D.  Acharya and S. M.  Hegde: On certain vertex valuations of a graph.Indian J.  Pure Appl. Math. 22 (1991), 553–560. MR 1124027
Reference: [8] B. D.  Acharya: $(k,d)$-graceful packings of a graph.In: Proc. of Group Discussion on graph labelling problems, Karnataka Regional Engineering College, Surathkal, August 16–25, 1999, B. D.  Acharya, S M.  Hegde (eds.).
Reference: [9] M.  Acharya and T.  Singh: Graceful signed graphs.Czechoslovak Math. J. 54(129) (2004), 291–302. MR 2059251, 10.1023/B:CMAJ.0000042369.18091.15
Reference: [10] M.  Behzad and G. T.  Chartrand: Line coloring of signed graphs.Elem. Math. 24 (1969), 49–52. MR 0244098
Reference: [11] J. C.  Bermod, A.  Kotzig and J. Trugeon: On a combinatorial problem of antennas in radio astronomy.In: Combinatorics; Proc. of the Colloquium of the Janos Bolyayi Mathematical Society (Keszthly; Hungary: 1976), Vol.  18, North-Holland, Amsterdam, 1978, pp. 135–149.
Reference: [12] G. T.  Chartrand: Graphs as Mathematical Models.Prindle, Weber and Schmidt, Boston, Masschusetts, 1977. Zbl 0384.05029, MR 0490611
Reference: [13] C.  Flament: Application of Graph Theory to Group structures.Prentice Hall, Englewood Cliffs, 1963. MR 0157785
Reference: [14] J. A.  Gallian: A dynamic survey of graph labelling.Electronic J.  Comb., Dynamic Survey 8 (2001, DS6), 1–55. MR 1668059
Reference: [15] S. W.  Golomb: How to number a graph? In: Graph Theory and Computing.R. C. Read (ed.), Academic Press, New York, 1972, pp. 23–37. MR 0340107
Reference: [16] F.  Harary: On the notion of balance of a signed graph.Mich. Math.  J. 2 (1954), 143–146. Zbl 0056.42103, MR 0067468
Reference: [17] F.  Harary, R. Z.  Norman and D.  Cartwright: Structural Models: An Introduction to the Theory of Directed graphs.Wiley, New York, 1965. MR 0184874
Reference: [18] F.  Harary: Graph Theory.Addison-Wesley Publ. Comp., Reading Massachusetts, 1969. Zbl 0196.27202, MR 0256911
Reference: [19] A.  Kotzig: On certain vertex valuations of finite graphs.Utilitas Math. 4 (1973), 261–290. Zbl 0277.05102, MR 0384616
Reference: [20] V.  Mishra: Graphs Associated with $[0,1]$ and $[0,+1,-1]$ Matrices.Department of Mathematics, Indian Institute of Technology, Bombay, 1974.
Reference: [21] F. S.  Roberts: Graph Theory and its Application to Problems of Society.SIAM, Philadelphia, 1978. MR 0508050
Reference: [22] A.  Rosa: On certain valuations of the vertices of a graph.In: Theory of Graphs. Proc. Internat, Symp. (Rome, 1966), P.  Rosentiehl (ed.), Dunod, Paris, 1968, pp. 349–355. MR 0223271
Reference: [23] P. J.  Slater: On $k$-sequential and other numbered graphs.Discrete Math. 34 (1981), 185–193. Zbl 0461.05053, MR 0611431, 10.1016/0012-365X(81)90066-2
Reference: [24] P. J.  Slater: On $k$-graceful graphs.Congr. Numer. 36 (1982), 53–57. Zbl 0519.05057, MR 0726049
Reference: [25] T.  Sozanski: Enumeration of weak isomorphism classes of signed graphs.J.  Graph Theory 4 (1980), 127–144. Zbl 0434.05059, MR 0570348, 10.1002/jgt.3190040202
Reference: [26] T.  Zaslavsky: Signed graphs.Discrete Appl. Math. 4 (1982), 47–74. Zbl 0498.05030, MR 0676405, 10.1016/0166-218X(82)90033-6
Reference: [27] T.  Zaslavsky: A mathematical bibliography of signed and gain graphs and allied areas (manuscript prepared with Marge Pratt).Electronic J. Combinatorics 8 (1998). MR 1744869
.

Files

Files Size Format View
CzechMathJ_55-2005-1_2.pdf 394.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo