Title:
|
Generalized first class selectors for upper semi-continuous set-valued maps in Banach spaces (English) |
Author:
|
Hansell, R. W. |
Author:
|
Oncina, L. |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
55 |
Issue:
|
1 |
Year:
|
2005 |
Pages:
|
145-155 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper we deal with weakly upper semi-continuous set-valued maps, taking arbitrary non-empty values, from a non-metric domain to a Banach space. We obtain selectors having the point of continuity property relative to the norm topology for a large class of compact spaces as a domain. Exact conditions under which the selector is of the first Borel class are also investigated. (English) |
Keyword:
|
measurable selectors |
Keyword:
|
upper semi-continuous maps |
Keyword:
|
point of continuity property |
MSC:
|
46B22 |
MSC:
|
46B99 |
MSC:
|
47H04 |
idZBL:
|
Zbl 1081.46016 |
idMR:
|
MR2121662 |
. |
Date available:
|
2009-09-24T11:21:38Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127965 |
. |
Reference:
|
[1] G. Gruenhage: A note on Gul’ko compact spaces.Proc. Amer. Math. Soc. 100 (1987), 371–376. Zbl 0622.54020, MR 0884482 |
Reference:
|
[2] G. Koumoullis: A generalization of functions of the first class.Topology Appl. 50 (1993), 217–239. Zbl 0788.54036, MR 1227551, 10.1016/0166-8641(93)90022-6 |
Reference:
|
[3] W. R. Hansell: First class selectors for upper semi-continuous multifunctions.J. Funct. Anal. 75 (1987), 382–395. Zbl 0644.54014, MR 0916758, 10.1016/0022-1236(87)90102-9 |
Reference:
|
[4] R. W. Hansell: Descriptive sets and the topology of nonseparable Banach spaces.Serdica Math. J. 27 (2001), 1–66. Zbl 0982.46012, MR 1828793 |
Reference:
|
[5] R. W. Hansell: First class functions with values in nonseparable spaces.Constantin Carathéodory: An International Tribute, Vols. I, II, World Sci. Publishing, Teaneck, 1991, pp. 461–475. Zbl 0767.54010, MR 1130849 |
Reference:
|
[6] R. W. Hansell: Descriptive Topology. Recent Progress in General Topology.M. Husec and J. van Mill (eds.), Elsevier Science Publishers, , 1992. MR 1229121 |
Reference:
|
[7] R. W. Hansell, J. E. Jayne, and M. Talagrand: First class selector for weakly upper semi-continuous multivalued maps in Banach spaces.J. Reine Angew. Math. 361 (1985), 201–220. MR 0807260 |
Reference:
|
[8] J. E. Jayne, J. Orihuela, A. J. Pallarés, and G. Vera: $\sigma $-fragmentability of multivalued maps and selection theorems.J. Funct. Anal. 117 (1993), 243–273. MR 1244937, 10.1006/jfan.1993.1127 |
Reference:
|
[9] J. E. Jayne, C. A. Rogers: Borel selectors for upper semi-continuous set-valued maps.Acta. Math. 155 (1985), 41–79. MR 0793237, 10.1007/BF02392537 |
Reference:
|
[10] I. Namioka: Radon-Nikodým compact spaces and fragmentability.Mathematika 34 (1989), 258–281. MR 0933504 |
Reference:
|
[11] L. Oncina: Descriptive Banach spaces and Eberlein compacta.Doctoral Thesis, Universidad de Murcia, 1999. |
Reference:
|
[12] N. K. Ribarska: Internal characterization of fragmentable spaces.Mathematika 34 (1987), 243–257. Zbl 0645.46017, MR 0933503, 10.1112/S0025579300013498 |
Reference:
|
[13] V. V. Srivatsa: Baire class 1 selectors for upper-semicontinuous set-valued maps.Trans. Amer. Math. Soc. 337 (1993), 609–624. Zbl 0822.54017, MR 1140919 |
Reference:
|
[14] M. Talagrand: Pettis Integral and Measure Theory.Mem. Amer. Math. Soc. 307, Providence, 1984, pp. 224. Zbl 0582.46049, MR 0756174 |
. |