Previous |  Up |  Next

Article

Title: A Morita type theorem for a sort of quotient categories (English)
Author: Breaz, Simion
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 55
Issue: 1
Year: 2005
Pages: 133-144
Summary lang: English
.
Category: math
.
Summary: We consider the quotient categories of two categories of modules relative to the Serre classes of modules which are bounded as abelian groups and we prove a Morita type theorem for some equivalences between these quotient categories. (English)
Keyword: Morita theorem
Keyword: quotient category
Keyword: equivalent categories
Keyword: adjoint functors
MSC: 16A50
MSC: 16B50
MSC: 16D90
idZBL: Zbl 1081.16010
idMR: MR2121661
.
Date available: 2009-09-24T11:21:29Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127964
.
Reference: [1] U.  Albrecht: Finite extensions of $A$-solvable abelian groups.J.  Pure Appl. Algebra 158 (2001), 1–14. Zbl 0983.20055, MR 1815779, 10.1016/S0022-4049(00)00042-6
Reference: [2] U.  Albrecht: Quasi-decompositions of abelian groups and Baer’s Lemma.Rocky Mountain J. Math. 22 (1992), 1227–1241. MR 1201088, 10.1216/rmjm/1181072651
Reference: [3] U. Albrecht and P. Goeters: Almost flat abelian groups.Rocky Mountain J. Math. 25 (1995), 827–842. MR 1357094, 10.1216/rmjm/1181072189
Reference: [4] F.  Anderson and K. Fuller: Rings and Categories of Modules. Graduate Texts in Mathematics  13.Springer-Verlag, , 1973. MR 1245487
Reference: [5] D. M.  Arnold: Finite Rank Torsion Free Abelian Groups and Rings. Lecture Notes in Mathematics Vol.  931.Springer-Verlag, , 1982. MR 0665251
Reference: [6] S.  Breaz: Almost-flat modules.Czechoslovak Math.  J. 53(128) (2003), 479–489. Zbl 1027.16001, MR 1983467, 10.1023/A:1026255908301
Reference: [7] S.  Breaz and C. Modoi: On a quotient category.Studia Univ. Babeş-Bolyai Math. 47 (2002), 17–29. MR 1989587
Reference: [8] P.  Gabriel: Des catégories abelienes.Bull. Soc. Math. France 90 (1962), 323–448. MR 0232821, 10.24033/bsmf.1583
Reference: [9] N.  Popescu and L.  Popescu: Theory of Categories.Editura Academiei, Bucureşti, 1979.
Reference: [10] B.  Stenström: Rings of Quotients.Springer-Verlag, , 1975. MR 0389953
Reference: [11] C.  Vinsonhaler: Torsion free abelian groups quasi-projective over their endomorphism rings II.Pac. J. Math. 74 (1978), 261–265. Zbl 0349.20022, MR 0480777
Reference: [12] C.  Vinsonhaler and W. Wickless: Torsion free abelian groups quasi-projective over their endomorphism rings.Pacific J. Math. 68 (1977), 527–535. MR 0480776, 10.2140/pjm.1977.68.527
Reference: [13] E.  Walker: Quotient categories and quasi-isomorphisms of abelian groups.In: Proc. Colloq. Abelian Groups, Budapest (1964), 1964, pp. 147–162. Zbl 0142.26201, MR 0178069
Reference: [14] R.  Wisbauer: Foundations of Module and Ring Theory.Gordon and Breach, Reading, 1991. Zbl 0746.16001, MR 1144522
.

Files

Files Size Format View
CzechMathJ_55-2005-1_9.pdf 370.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo