Previous |  Up |  Next

Article

Title: On total restrained domination in graphs (English)
Author: Ma, De-xiang
Author: Chen, Xue-Gang
Author: Sun, Liang
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 55
Issue: 1
Year: 2005
Pages: 165-173
Summary lang: English
.
Category: math
.
Summary: In this paper we initiate the study of total restrained domination in graphs. Let $G=(V,E)$ be a graph. A total restrained dominating set is a set $S\subseteq V$ where every vertex in $V-S$ is adjacent to a vertex in $S$ as well as to another vertex in $V-S$, and every vertex in $S$ is adjacent to another vertex in $S$. The total restrained domination number of $G$, denoted by $\gamma _r^t(G)$, is the smallest cardinality of a total restrained dominating set of $G$. First, some exact values and sharp bounds for $\gamma _r^t(G)$ are given in Section 2. Then the Nordhaus-Gaddum-type results for total restrained domination number are established in Section 3. Finally, we show that the decision problem for $\gamma _r^t(G)$ is NP-complete even for bipartite and chordal graphs in Section 4. (English)
Keyword: total restrained domination number
Keyword: Nordhaus-Gaddum-type results
Keyword: NP-complete
Keyword: level decomposition
MSC: 05C35
MSC: 05C69
idZBL: Zbl 1081.05086
idMR: MR2121664
.
Date available: 2009-09-24T11:21:53Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127967
.
Reference: [1] G. S. Domke, J. H.  Hattingh et al: Restrained domination in graphs.Discrete Math. 203 (1999), 61–69. MR 1696234, 10.1016/S0012-365X(99)00016-3
Reference: [2] M. A. Henning: Graphs with large restrained domination number.Discrete Math. 197/198 (1999), 415–429. Zbl 0932.05070, MR 1674878
Reference: [3] E. A. Nordhaus and J. W. Gaddum: On complementary graphs.Amer. Math. Monthly 63 (1956), 175–177. MR 0078685, 10.2307/2306658
Reference: [4] F. Jaeger and C.  Payan: Relations du type Nordhaus-Gaddum pour le nombre d’absorption d’un granhe simple.C. R. Acad. Sci. Ser.  A 274 (1972), 728–730. MR 0294161
Reference: [5] M. R. Garey and D. S.  Johnson: Computers and Intractability: A Guide to the Theory of NP-Completeness.Freeman, New York, 1979. MR 0519066
.

Files

Files Size Format View
CzechMathJ_55-2005-1_12.pdf 328.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo