Previous |  Up |  Next

Article

Title: New sufficient convergence conditions for the secant method (English)
Author: Argyros, Ioannis K.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 55
Issue: 1
Year: 2005
Pages: 175-187
Summary lang: English
.
Category: math
.
Summary: We provide new sufficient conditions for the convergence of the secant method to a locally unique solution of a nonlinear equation in a Banach space. Our new idea uses “Lipschitz-type” and center-“Lipschitz-type” instead of just “Lipschitz-type” conditions on the divided difference of the operator involved. It turns out that this way our error bounds are more precise than the earlier ones and under our convergence hypotheses we can cover cases where the earlier conditions are violated. (English)
Keyword: secant method
Keyword: Banach space
Keyword: majorizing sequence
Keyword: divided difference
Keyword: Fréchet-derivative
MSC: 47H17
MSC: 47J25
MSC: 49M15
MSC: 65B05
MSC: 65G99
MSC: 65H10
MSC: 65J15
MSC: 65N30
idZBL: Zbl 1081.65043
idMR: MR2121665
.
Date available: 2009-09-24T11:22:00Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127968
.
Reference: [1] I. K.  Argyros: A convergence theorem for Newton-like methods under generalized Chen-Yamamoto-type assumptions.Appl. Math. Comput. 61 (1994), 25–37. Zbl 0796.65077, MR 1274298, 10.1016/0096-3003(94)90144-9
Reference: [2] I. K.  Argyros: On a new Newton-Mysovskii-type theorem with applications to inexact-Newton-like methods and their discretizations.IMA J.  Numer. Anal. 18 (1998), 37–56. MR 1492047, 10.1093/imanum/18.1.37
Reference: [3] I. K.  Argyros and F.  Szidarovszky: The Theory and Application of Iteration Methods.CRC Press, Boca Raton, 1993. MR 1272012
Reference: [4] W. E.  Bosarge and P. L.  Falb: A multipoint method of third order.J.  Optimiz. Th. Applic. 4 (1969), 156–166. MR 0248581, 10.1007/BF00930576
Reference: [5] J. E.  Dennis: Toward a unified convergence theory for Newton-like methods.In: Nonlinear Functional Analysis, L. B.  Rall (ed.), Academic Press, New York, 1971. Zbl 0276.65029, MR 0278556
Reference: [6] J. M.  Gutiérrez: A new semilocal convergence theorem for Newton’s method.J.  Comput. Appl. Math. 79 (1997), 131–145. MR 1437974, 10.1016/S0377-0427(97)81611-1
Reference: [7] J. M.  Gutiérrez, M. A.  Hernandez and M. A. Salanova: Accessibility of solutions by Newton’s method.Intern. J.  Comput. Math. 57 (1995), 239–247. 10.1080/00207169508804427
Reference: [8] M. A.  Hernandez, M. J.  Rubio and J. A. Ezquerro: Secant-like methods for solving nonlinear integral equations of the Hammerstein type.J.  Comput. Appl. Math. 115 (2000), 245–254. MR 1747223, 10.1016/S0377-0427(99)00116-8
Reference: [9] L. V.  Kantorovich and G. R.  Akilov: Functional Analysis in Normed Spaces.Pergamon Press, Oxford Press, , 1982. MR 0664597
Reference: [10] J. M.  Ortega and W. C.  Rheinboldt: Iterative Solution of Nonlinear Equations in Several Variables.Academic Press, New York, 1970. MR 0273810
Reference: [11] F. A.  Potra: Sharp error bounds for a class of Newton-like methods.Libertas Mathematica 5 (1985), 71–84. Zbl 0581.47050, MR 0816258
Reference: [12] T.  Yamamoto: A convergence theorem for Newton-like methods in Banach spaces.Numer. Math. 51 (1987), 545–557. Zbl 0633.65049, MR 0910864, 10.1007/BF01400355
.

Files

Files Size Format View
CzechMathJ_55-2005-1_13.pdf 314.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo