Previous |  Up |  Next

Article

Title: Balanced Colombeau products of the distributions $x_{\pm}^{-p}$ and $x^{-p}$ (English)
Author: Damyanov, B. P.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 55
Issue: 1
Year: 2005
Pages: 189-201
Summary lang: English
.
Category: math
.
Summary: Results on singular products of the distributions $x_{\pm }^{-p}$ and $x^{-p}$ for natural $p$ are derived, when the products are balanced so that their sum exists in the distribution space. These results follow the pattern of a known distributional product published by Jan Mikusiński in 1966. The results are obtained in the Colombeau algebra of generalized functions, which is the most relevant algebraic construction for tackling nonlinear problems of Schwartz distributions. (English)
Keyword: Schwartz distributions
Keyword: multiplication
Keyword: Colombeau generalized functions
MSC: 46F10
MSC: 46F30
idZBL: Zbl 1081.46027
idMR: MR2121666
.
Date available: 2009-09-24T11:22:07Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127969
.
Reference: [1] V.  Chistyakov: The Colombeau generalized nonlinear analysis and the Schwartz linear distribution theory.J.  Math. Sci. 93 (1999), 42–133. Zbl 0951.46018, MR 1683831, 10.1007/BF02365214
Reference: [2] J.-F.  Colombeau: New generalized functions. Multiplication of distributions. Physical applications. Contribution of J. Sebastião e Silva.Portugal Math. 41 (1982), 57–69. Zbl 0599.46056, MR 0766839
Reference: [3] J. F.  Colombeau: New Generalized Functions and Multiplication of Distributions.North Holland Math. Studies 84, Amsterdam, 1984. Zbl 0532.46019, MR 0738781
Reference: [4] B. Damyanov: Results on Colombeau product of distributions.Comment. Math. Univ. Carolinae 38 (1997), 627–634. Zbl 0937.46030, MR 1601668
Reference: [5] B. Damyanov: Mikusiński type products of distributions in Colombeau algebra.Indian J.  Pure Appl. Math. 32 (2001), 361–375. Zbl 1021.46032, MR 1826763
Reference: [6] I.  Gradstein and I.  Ryzhik: Tables of Integrals, Sums, Series, and Products.Fizmatgiz Publishing, Moscow, 1963.
Reference: [7] I.  Gel’fand and G.  Shilov: Generalized Functions, Vol. 1.Academic Press, New York and London, 1964. MR 0166596
Reference: [8] L.  Hörmander: Analysis of LPD  Operators  I. Distribution Theory and Fourier Analysis.Springer-Verlag, Berlin, 1983. MR 0717035
Reference: [9] J. Jelínek: Characterization of the Colombeau product of distributions.Comment. Math. Univ. Carolinae 27 (1986), 377–394. MR 0857556
Reference: [10] J.  Mikusiński: On the square of the Dirac delta-distribution.Bull. Acad. Pol. Ser. Sci. Math. Astron. Phys. 43 (1966), 511–513. MR 0203392
Reference: [11] M.  Oberguggenberger: Multiplication of Distributions and Applications to PDEs.Longman, Essex, 1992.
.

Files

Files Size Format View
CzechMathJ_55-2005-1_14.pdf 350.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo