Previous |  Up |  Next

Article

Title: Global monotonicity and oscillation for second order differential equation (English)
Author: Bartušek, M.
Author: Cecchi, M.
Author: Došlá, Z.
Author: Marini, M.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 55
Issue: 1
Year: 2005
Pages: 209-222
Summary lang: English
.
Category: math
.
Summary: Oscillatory properties of the second order nonlinear equation \[ (r(t)x^{\prime })^{\prime }+q(t)f(x)=0 \] are investigated. In particular, criteria for the existence of at least one oscillatory solution and for the global monotonicity properties of nonoscillatory solutions are established. The possible coexistence of oscillatory and nonoscillatory solutions is studied too. (English)
Keyword: second order nonlinear differential equation
Keyword: oscillatory solution
Keyword: nonoscillatory solution
Keyword: coexistence problem
MSC: 34C10
MSC: 34C11
idZBL: Zbl 1081.34029
idMR: MR2121668
.
Date available: 2009-09-24T11:22:20Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127971
.
Reference: [1] M. Cecchi, M. Marini and G.  Villari: On some classes of continuable solutions of a nonlinear differential equation.J.  Diff. Equat. 118 (1995), 403–419. MR 1330834, 10.1006/jdeq.1995.1079
Reference: [2] C. V. Coffman and J. S. W.  Wong: On a second order nonlinear oscillation problem.Trans. Amer. Math. Soc. 147 (1970), 357–366. MR 0257473, 10.1090/S0002-9947-1970-0257473-2
Reference: [3] C. V. Coffman and J. S. W. Wong: Oscillation and nonoscillation theorems for second order differential equations.Funkcialaj Ekvacioj 15 (1972), 119–130. MR 0333337
Reference: [4] C. V. Coffman and J. S. W. Wong: Oscillation and nonoscillation of solutions of generalized Emden-Fowler equations.Trans. Amer. Math. Soc. 167 (1972), 399–434. MR 0296413, 10.1090/S0002-9947-1972-0296413-9
Reference: [5] L. H. Erbe and J. S. Muldowney: On the existence of oscillatory solutions to nonlinear differential equations.Ann. Mat. Pura Appl. 59 (1976), 23–37. MR 0481254
Reference: [6] L. H. Erbe and H. Lu: Nonoscillation theorems for second order nonlinear differential equations.Funkcialaj Ekvacioj 33 (1990), 227–244. MR 1078128
Reference: [7] L. H. Erbe: Nonoscillation criteria for second order nonlinear differential equations.J. Math. Anal. Appl. 108 (1985), 515–527. Zbl 0579.34027, MR 0793663, 10.1016/0022-247X(85)90042-3
Reference: [8] J. W. Heidel and I. T. Kiguradze: Oscillatory solutions for a generalized sublinear second order differential equation.Proc. Amer. Math. Soc. 38 (1973), 80–82. MR 0310339, 10.1090/S0002-9939-1973-0310339-X
Reference: [9] D. V. Izjumova: On oscillation and nonoscillation conditions for solutions of nonlinear second order differential equations.Diff. Urav. 11 (1966), 1572–1586. (Russian)
Reference: [10] M. Jasný: On the existence of oscillatory solutions of the second order nonlinear differential equation $y^{\prime \prime }+f(x)y^{2n-1}=0$.Čas. Pěst. Mat. 85 (1960), 78–83. (Russian)
Reference: [11] I. Kiguradze and A. Chanturia: Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations.Kluwer Acad. Publ., , 1993. MR 1220223
Reference: [12] J. Kurzweil: A note on oscillatory solutions of the equation $y^{\prime \prime }+f(x)y^{2n-1}=0$.Čas. Pěst. Mat. 82 (1957), 218–226. (Russian)
Reference: [13] Chiou Kuo-Liang: The existence of oscillatory solutions for the equation ${\mathrm d}^2y/{\mathrm d}t^2 +q(t)y^{r}=0$, $0<r<1$.Proc. Amer. Math. Soc. 35 (1972), 120–122. MR 0301292, 10.1090/S0002-9939-1972-0301292-2
Reference: [14] S. Matucci: On asymptotic decaying solutions for a class of second order differential equations.Arch. Math. (Brno) 35 (1999), 275–284. Zbl 1048.34088, MR 1725843
Reference: [15] J. D. Mirzov: Asymptotic properties of solutions of the systems of nonlinear nonautonomous ordinary differential equations.(1993), Adygeja Publ., Maikop. (Russian)
Reference: [16] R. A. Moore and Z. Nehari: Nonoscillation theorems for a class of nonlinear differential equations.Trans. Amer. Math. Soc. 93 (1959), 30–52. MR 0111897, 10.1090/S0002-9947-1959-0111897-8
Reference: [17] J. Sugie and K. Kita: Oscillation criteria for second order nonlinear differential equations of Euler type.J. Math. Anal. Appl. 253 (2001), 414–439. MR 1808146, 10.1006/jmaa.2000.7149
Reference: [18] J. S. W. Wong: On the generalized Emden-Fowler equation.SIAM Rev. 17 (1975), 339–360. Zbl 0295.34026, MR 0367368, 10.1137/1017036
.

Files

Files Size Format View
CzechMathJ_55-2005-1_16.pdf 361.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo