Previous |  Up |  Next

Article

Title: On vector lattices of elementary Carathéodory functions (English)
Author: Jakubík, Ján
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 55
Issue: 1
Year: 2005
Pages: 223-236
Summary lang: English
.
Category: math
.
Summary: In this paper we deal with the vector lattice $C(B)$ of all elementary Carathéodory functions corresponding to a generalized Boolean algebra $B$. (English)
Keyword: generalized Boolean algebra
Keyword: elementary Carathéodory functions
Keyword: Specker lattice ordered group
Keyword: $(\alpha, \beta)$-distributivity
Keyword: complete distributivity
MSC: 06F20
MSC: 46A40
idZBL: Zbl 1081.06021
idMR: MR2121669
.
Date available: 2009-09-24T11:22:26Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127972
.
Reference: [1] G.  Birkhoff: Lattice Theory, Third Edition., Providence, 1967. MR 0227053
Reference: [2] P.  Conrad: Lattice Ordered Groups.Tulane University, Tulane, 1970. Zbl 0258.06011
Reference: [3] P.  Conrad and M. R.  Darnel: Lattice-ordered groups whose lattices determine their additions.Trans. Amer. Math. Soc. 330 (1992), 575–598. MR 1031238, 10.1090/S0002-9947-1992-1031238-0
Reference: [4] P. F.  Conrad and M. R.  Darnel: Generalized Boolean algebras in lattice-ordered groups.Order 14 (1998), 295–319. MR 1644504, 10.1023/A:1006075129584
Reference: [5] P. F.  Conrad and M. R.  Darnel: Subgroups and hulls of Specker lattice-ordered groups.Czechoslovak Math.  J (to appear). MR 1844319
Reference: [6] P. F.  Conrad and J. Martinez: Signatures and $S$-discrete lattice ordered groups.Alg. Universalis 29 (1992), 521–545. MR 1201177, 10.1007/BF01190779
Reference: [7] C.  Gofman: Remarks on lattice ordered groups and vector lattices. I.  Carathéodory functions.Trans. Amer. Math. Soc. 88 (1958), 107–120. MR 0097331
Reference: [8] J.  Jakubík: Konvexe Ketten in $\ell $-Gruppen.Čas. pěst. mat. 83 (1959), 53–63. MR 0104740
Reference: [9] J.  Jakubík: Cardinal properties of lattice ordered groups.Fundamenta Math. 74 (1972), 85–98. MR 0302528, 10.4064/fm-74-2-85-98
Reference: [10] J.  Jakubík: Distributivity in lattice ordered groups.Czechoslovak Math.  J. 22 (1972), 108–125. MR 0325487
Reference: [11] J.  Jakubík: Torsion classes of Specker lattice ordered groups.Czechoslovak Math.  J. 52 (2002), 469–482. MR 1923254, 10.1023/A:1021711326115
Reference: [12] R.  Sikorski: Boolean Algebras.Second Edition, Springer-Verlag, Berlin, 1964. Zbl 0123.01303, MR 0177920
Reference: [13] E. C.  Weinberg: Higher degrees of distributivity in lattices of continuous functions.Trans. Amer. Math. Soc. 114 (1962), 334–346. Zbl 0105.09401, MR 0138569, 10.1090/S0002-9947-1962-0138569-8
.

Files

Files Size Format View
CzechMathJ_55-2005-1_17.pdf 343.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo