Title:
|
Existence for nonoscillatory solutions of higher order nonlinear neutral differential equations (English) |
Author:
|
Zhou, Yong |
Author:
|
Zhang, B. G. |
Author:
|
Huang, Y. Q. |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
55 |
Issue:
|
1 |
Year:
|
2005 |
Pages:
|
237-253 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Consider the forced higher-order nonlinear neutral functional differential equation \[ \frac{{\mathrm d}^n}{{\mathrm d}t^n}[x(t)+C(t) x(t-\tau )]+\sum ^m_{i=1} Q_i(t)f_i(x(t-\sigma _i))=g(t), \quad t\ge t_0, \] where $n, m \ge 1$ are integers, $\tau , \sigma _i\in {\mathbb{R}}^+ =[0, \infty )$, $C, Q_i, g\in C([t_0, \infty ), {\mathbb{R}})$, $f_i\in C(\mathbb{R}, \mathbb{R})$, $(i=1,2,\dots ,m)$. Some sufficient conditions for the existence of a nonoscillatory solution of above equation are obtained for general $Q_i(t)$ $(i=1,2,\dots ,m)$ and $g(t)$ which means that we allow oscillatory $Q_i(t)$ $(i=1,2,\dots ,m)$ and $g(t)$. Our results improve essentially some known results in the references. (English) |
Keyword:
|
neutral differential equations |
Keyword:
|
nonoscillatory solutions |
MSC:
|
34K11 |
MSC:
|
34K15 |
MSC:
|
34K40 |
idZBL:
|
Zbl 1081.34068 |
idMR:
|
MR2121670 |
. |
Date available:
|
2009-09-24T11:22:33Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127973 |
. |
Reference:
|
[1] R. P. Agarwal, S. R. Grace and D. O’Regan: Oscillation Theory for Difference and Functional Differential Equations.Kluwer Academic Publishers, , 2000. MR 1774732 |
Reference:
|
[2] R. P. Agarwal, S. R. Grace and D. O’Regan: Oscillation criteria for certain $n$th order differential equations with deviating arguments.J. Math. Anal. Appl. 262 (2001), 601–622. MR 1859327, 10.1006/jmaa.2001.7571 |
Reference:
|
[3] R. P. Agarwal and S. R. Grace: The oscillation of higher-order differential equations with deviating arguments.Computers Math. Applied 38 (1999), 185–190. MR 1703416, 10.1016/S0898-1221(99)00193-5 |
Reference:
|
[4] M. P. Chen, J. S. Yu and Z. C. Wang: Nonoscillatory solutions of neutral delay differential equations.Bull. Austral. Math. Soc. 48 (1993), 475–483. MR 1248051, 10.1017/S0004972700015938 |
Reference:
|
[5] L. H. Erbe, Q. K. Kong and B. G. Zhang: Oscillation Theory for Functional Differential equations.Marcel Dekker, New York, 1995. MR 1309905 |
Reference:
|
[6] I. Gyori and G. Ladas: Oscillation Theory of Delay Differential Equations with Applications.Oxford Univ. Press, London, 1991. MR 1168471 |
Reference:
|
[7] J. R. Graef, B. Yang and B. G. Zhang: Existence of nonoscillatory and oscillatory solutions of neutral differential equations with positive and negative coefficients.Math. Bohemica 124 (1999), 87–102. MR 1687484 |
Reference:
|
[8] M. R. S. Kulenovic and S. Hadziomerspahic: Existence of nonoscillatory solution of second order linear neutral delay equation.J. Math. Anal. Appl. 228 (1998), 436–448. MR 1663585, 10.1006/jmaa.1997.6156 |
Reference:
|
[9] H. A. El-Morshedy and K. Gopalsamy: Nonoscillation, oscillation and convergence of a class of neutral equations.Nonlinear Anal. 40 (2000), 173–183. MR 1768408, 10.1016/S0362-546X(00)85010-5 |
Reference:
|
[10] C. H. Ou and J. S. W. Wong: Forced oscillation of $n$th-order functional differential equations.J. Math. Anal. Appl. 262 (2001), 722–732. MR 1859335, 10.1006/jmaa.2001.7614 |
Reference:
|
[11] S. Tanaka: Existence of positive solutions for a class of higher order neutral differential equations.Czechoslovak Math. J. 51 (2001), 573–583. MR 1851548, 10.1023/A:1013736122991 |
Reference:
|
[12] N. Parhi and R. N. Rath: Oscillation criteria for forced first order neutral differential equations with variable coefficients.J. Math. Anal. Appl. 256 (2001), 525–241. MR 1821755, 10.1006/jmaa.2000.7315 |
Reference:
|
[13] B. G. Zhang and B. Yang: New approach of studying the oscillation of neutral differential equations.Funkcial Ekvac. 41 (1998), 79–89. MR 1627357 |
Reference:
|
[14] Yong Zhou: Oscillation of neutral functional differential equations.Acta Math. Hungar. 86 (2000), 205–212. MR 1756173, 10.1023/A:1006716411558 |
Reference:
|
[15] Yong Zhou and B. G. Zhang: Existence of nonoscillatory solutions of higher-order neutral differential equations with positive and negative coefficients.Appl. Math. Lett. 15 (2002), 867–874. MR 1920988, 10.1016/S0893-9659(02)00055-1 |
. |