Previous |  Up |  Next

Article

Title: Existence for nonoscillatory solutions of higher order nonlinear neutral differential equations (English)
Author: Zhou, Yong
Author: Zhang, B. G.
Author: Huang, Y. Q.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 55
Issue: 1
Year: 2005
Pages: 237-253
Summary lang: English
.
Category: math
.
Summary: Consider the forced higher-order nonlinear neutral functional differential equation \[ \frac{{\mathrm d}^n}{{\mathrm d}t^n}[x(t)+C(t) x(t-\tau )]+\sum ^m_{i=1} Q_i(t)f_i(x(t-\sigma _i))=g(t), \quad t\ge t_0, \] where $n, m \ge 1$ are integers, $\tau , \sigma _i\in {\mathbb{R}}^+ =[0, \infty )$, $C, Q_i, g\in C([t_0, \infty ), {\mathbb{R}})$, $f_i\in C(\mathbb{R}, \mathbb{R})$, $(i=1,2,\dots ,m)$. Some sufficient conditions for the existence of a nonoscillatory solution of above equation are obtained for general $Q_i(t)$ $(i=1,2,\dots ,m)$ and $g(t)$ which means that we allow oscillatory $Q_i(t)$ $(i=1,2,\dots ,m)$ and $g(t)$. Our results improve essentially some known results in the references. (English)
Keyword: neutral differential equations
Keyword: nonoscillatory solutions
MSC: 34K11
MSC: 34K15
MSC: 34K40
idZBL: Zbl 1081.34068
idMR: MR2121670
.
Date available: 2009-09-24T11:22:33Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127973
.
Reference: [1] R. P. Agarwal, S. R.  Grace and D.  O’Regan: Oscillation Theory for Difference and Functional Differential Equations.Kluwer Academic Publishers, , 2000. MR 1774732
Reference: [2] R. P.  Agarwal, S. R.  Grace and D.  O’Regan: Oscillation criteria for certain $n$th  order differential equations with deviating arguments.J.  Math. Anal. Appl. 262 (2001), 601–622. MR 1859327, 10.1006/jmaa.2001.7571
Reference: [3] R. P.  Agarwal and S. R.  Grace: The oscillation of higher-order differential equations with deviating arguments.Computers Math. Applied 38 (1999), 185–190. MR 1703416, 10.1016/S0898-1221(99)00193-5
Reference: [4] M. P.  Chen, J. S.  Yu and Z. C.  Wang: Nonoscillatory solutions of neutral delay differential equations.Bull. Austral. Math. Soc. 48 (1993), 475–483. MR 1248051, 10.1017/S0004972700015938
Reference: [5] L. H.  Erbe, Q. K.  Kong and B. G.  Zhang: Oscillation Theory for Functional Differential equations.Marcel Dekker, New York, 1995. MR 1309905
Reference: [6] I.  Gyori and G.  Ladas: Oscillation Theory of Delay Differential Equations with Applications.Oxford Univ. Press, London, 1991. MR 1168471
Reference: [7] J. R.  Graef, B.  Yang and B. G.  Zhang: Existence of nonoscillatory and oscillatory solutions of neutral differential equations with positive and negative coefficients.Math. Bohemica 124 (1999), 87–102. MR 1687484
Reference: [8] M. R. S.  Kulenovic and S.  Hadziomerspahic: Existence of nonoscillatory solution of second order linear neutral delay equation.J.  Math. Anal. Appl. 228 (1998), 436–448. MR 1663585, 10.1006/jmaa.1997.6156
Reference: [9] H. A. El-Morshedy and K.  Gopalsamy: Nonoscillation, oscillation and convergence of a class of neutral equations.Nonlinear Anal. 40 (2000), 173–183. MR 1768408, 10.1016/S0362-546X(00)85010-5
Reference: [10] C. H.  Ou and J. S. W.  Wong: Forced oscillation of $n$th-order functional differential equations.J.  Math. Anal. Appl. 262 (2001), 722–732. MR 1859335, 10.1006/jmaa.2001.7614
Reference: [11] S.  Tanaka: Existence of positive solutions for a class of higher order neutral differential equations.Czechoslovak Math.  J. 51 (2001), 573–583. MR 1851548, 10.1023/A:1013736122991
Reference: [12] N.  Parhi and R. N.  Rath: Oscillation criteria for forced first order neutral differential equations with variable coefficients.J.  Math. Anal. Appl. 256 (2001), 525–241. MR 1821755, 10.1006/jmaa.2000.7315
Reference: [13] B. G.  Zhang and B.  Yang: New approach of studying the oscillation of neutral differential equations.Funkcial Ekvac. 41 (1998), 79–89. MR 1627357
Reference: [14] Yong Zhou: Oscillation of neutral functional differential equations.Acta Math. Hungar. 86 (2000), 205–212. MR 1756173, 10.1023/A:1006716411558
Reference: [15] Yong Zhou and B. G.  Zhang: Existence of nonoscillatory solutions of higher-order neutral differential equations with positive and negative coefficients.Appl. Math. Lett. 15 (2002), 867–874. MR 1920988, 10.1016/S0893-9659(02)00055-1
.

Files

Files Size Format View
CzechMathJ_55-2005-1_18.pdf 366.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo