Previous |  Up |  Next

Article

Title: Homomorphic images and rationalizations based on the Eilenberg-MacLane spaces (English)
Author: Lee, Dae-Woong
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 55
Issue: 2
Year: 2005
Pages: 465-470
Summary lang: English
.
Category: math
.
Summary: Are there any kinds of self maps on the loop structure whose induced homomorphic images are the Lie brackets in tensor algebra? We will give an answer to this question by defining a self map of $\Omega \Sigma K(\mathbb{Z}, 2d)$, and then by computing efficiently some self maps. We also study the topological rationalization properties of the suspension of the Eilenberg-MacLane spaces. These results will be playing a powerful role in the computation of the same $n$-type problems and giving us an information about the rational homotopy equivalence. (English)
Keyword: Lie bracket
Keyword: tensor algebra
Keyword: rationalization
Keyword: Steenrod power
MSC: 55P62
MSC: 55Q15
MSC: 55S37
idZBL: Zbl 1081.55017
idMR: MR2137152
.
Date available: 2009-09-24T11:24:31Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127992
.
Reference: [1] D.  Lee and C. A.  McGibbon: The same $n$-type problem for certain suspensions.Preprint.
Reference: [2] B.  Gray: Homotopy theory, an Introduction to Algebraic Topology.Academic Press, New York, 1975. Zbl 0322.55001, MR 0402714
Reference: [3] C.  A.  McGibbon: Self maps of projective spaces.Trans. Amer. Math. Soc. 271 (1982), 325–346. Zbl 0491.55014, MR 0648096
Reference: [4] C. A.  McGibbon: Phantom maps.In: The Handbook of Algebraic Topology, I. M. James (ed.), North-Holland, New York, 1995, pp. . Zbl 0867.55013, MR 1361910
Reference: [5] K.  Morisugi: Projective elements in K-theory and self maps of  $\Sigma {\mathbb{C}}P^\infty $.J. Math. Kyoto Univ. 38 (1998), 151–165. MR 1628087, 10.1215/kjm/1250518164
Reference: [6] N.  E.  Steenrod and D. B. A.  Epstein: Cohomology operations. Ann. of Math. Stud., No.  50.Princeton University Press, Princeton, 1962, pp. 139. MR 0145525
Reference: [7] D.  Sullivan: The genetics of homotopy theory and the Adams conjecture.Ann. of Math. 100 (1974), 1–79. MR 0442930, 10.2307/1970841
.

Files

Files Size Format View
CzechMathJ_55-2005-2_16.pdf 308.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo