Previous |  Up |  Next

Article

Title: Primitive lattice points inside an ellipse (English)
Author: Nowak, Werner Georg
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 55
Issue: 2
Year: 2005
Pages: 519-530
Summary lang: English
.
Category: math
.
Summary: Let $Q(u, v)$ be a positive definite binary quadratic form with arbitrary real coefficients. For large real $x$, one may ask for the number $B(x)$ of primitive lattice points (integer points $(m, n)$ with $\gcd (M,n) =1$) in the ellipse disc $Q(u, v)\le x$, in particular, for the remainder term $R(x)$ in the asymptotics for $B(x)$. While upper bounds for $R(x)$ depend on zero-free regions of the zeta-function, and thus, in most published results, on the Riemann Hypothesis, the present paper deals with a lower estimate. It is proved that the absolute value or $R(x)$ is, in integral mean, at least a positive constant $c$ time $x^{1/4}$. Furthermore, it is shown how to find an explicit value for $c$, for each specific given form $Q$. (English)
Keyword: primitive lattice points
Keyword: lattice point discrepancy
Keyword: planar domains
MSC: 11E45
MSC: 11P21
idZBL: Zbl 1081.11064
idMR: MR2137159
.
Date available: 2009-09-24T11:25:16Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127999
.
Reference: [1] P. Bleher: On the distribution of the number of lattice points inside a family of convex ovals.Duke Math. J. 67 (1992), 461–481. Zbl 0762.11031, MR 1181309
Reference: [2] J. B. Conrey: More than two fifth of the zeros of the Riemann zeta-function are on the critical line.J. Reine Angew. Math. 399 (1989), 1–26. MR 1004130
Reference: [3] H. Davenport and H. Heilbronn: On the zeros of certain Dirichlet series  I.J. London Math. Soc. 11 (1936), 181–185. MR 1574345
Reference: [4] H. Davenport and H. Heilbronn: On the zeros of certain Dirichlet series  II.J. London Math. Soc. 11 (1936), 307–312. MR 1574931
Reference: [5] I. S. Gradshteyn and I. M. Ryzhik: Table of Integrals, Series, and Products, 5th ed..A. Jeffrey (ed.), Academic Press, San Diego, 1994. MR 1243179
Reference: [6] M. N. Huxley: Exponential sums and lattice points  II.Proc. London Math. Soc. 66 (1993), 279–301. Zbl 0820.11060, MR 1199067
Reference: [7] M. N. Huxley: Area, Lattice Points, and Exponential Sums. LMS Monographs, New Ser. Vol.  13.Clarendon Press, Oxford, 1996. MR 1420620
Reference: [8] M. N. Huxley: Exponential sums and lattice points  III.Proc. London Math. Soc. 87 (2003), 591–609. Zbl 1065.11079, MR 2005876
Reference: [9] M. N. Huxley and W. G. Nowak: Primitive lattice points in convex planar domains.Acta Arithm. 76 (1996), 271–283. MR 1397317, 10.4064/aa-76-3-271-283
Reference: [10] A. Ivić: The Riemann zeta-function.Wiley & Sons, New York, 1985. MR 0792089
Reference: [11] E. Krätzel: Lattice Points.Kluwer Academic Publishers, Berlin, 1988. MR 0998378
Reference: [12] E. Krätzel: Analytische Funktionen in der Zahlentheorie.Teubner, Wiesbaden, 2000. MR 1889901
Reference: [13] N. Levinson: More than one third of the zeros of Riemann’s zeta-function are on $\sigma =\frac{1}{2}$.Adv. Math. 13 (1974), 383–436. MR 0564081, 10.1016/0001-8708(74)90074-7
Reference: [14] W. Müller: Lattice points in convex planar domains: Power moments with an application to primitive lattice points.In: Proc. Number Theory Conf., Vienna  1996, W. G. Nowak, J. Schoißengeier (eds.), , Vienna, 1996, pp. 189–199.
Reference: [15] W. G. Nowak: An $\Omega $-estimate for the lattice rest of a convex planar domain.Proc.Roy. Soc. Edinburgh, Sect.  A 100 (1985), 295–299. Zbl 0582.10033, MR 0807708, 10.1017/S0308210500013834
Reference: [16] W. G. Nowak: On the mean lattice point discrepancy of a convex disc.Arch. Math. (Basel) 78 (2002), 241–248. Zbl 1013.11065, MR 1888708, 10.1007/s00013-002-8242-0
Reference: [17] J. Pintz: On the distribution of square-free numbers.J. London Math. Soc. 28 (1983), 401–405. Zbl 0532.10025, MR 0724708
Reference: [18] H. S. A. Potter: Approximate equations for the Epstein zeta-function.Proc. London Math. Soc. 36 (1934), 501–515. Zbl 0008.30001
Reference: [19] A. Selberg: On the Zeros of Riemann’s zeta-function.Skr. Norske Vid. Akad., Oslo, 1943. Zbl 0028.11101, MR 0010712
Reference: [20] E. C. Titchmarsh: The Theory of the Riemann zeta-function, 2nd ed.Clarendon Press, Oxford, 1986. Zbl 0601.10026, MR 0882550
Reference: [21] M. Voronin: On the zeros of zeta-functions of quadratic forms.Trudy Mat. Inst. Steklova 142 (1976), 135–147. Zbl 0432.10009, MR 0562285
Reference: [22] : Wolfram Research, Inc., Mathematica 4.1., Champaign, 2001.
Reference: [23] J. Wu: On the primitive circle problem.Monatsh. Math. 135 (2002), 69–81. Zbl 0994.11035, MR 1894296, 10.1007/s006050200006
Reference: [24] W. Zhai, X. D. Cao: On the number of coprime integer pairs within a circle.Acta Arithm. 90 (1999), 1–16. MR 1708625
Reference: [25] W. Zhai: On primitive lattice points in planar domains.Acta Arithm. 109 (2003), 1–26. Zbl 1027.11075, MR 1980849, 10.4064/aa109-1-1
.

Files

Files Size Format View
CzechMathJ_55-2005-2_23.pdf 402.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo