| Title:
             | 
A note on the independent domination number of subset graph (English) | 
| Author:
             | 
Chen, Xue-Gang | 
| Author:
             | 
Ma, De-xiang | 
| Author:
             | 
Xing, Hua-Ming | 
| Author:
             | 
Sun, Liang | 
| Language:
             | 
English | 
| Journal:
             | 
Czechoslovak Mathematical Journal | 
| ISSN:
             | 
0011-4642 (print) | 
| ISSN:
             | 
1572-9141 (online) | 
| Volume:
             | 
55 | 
| Issue:
             | 
2 | 
| Year:
             | 
2005 | 
| Pages:
             | 
511-517 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
The independent domination number  $i(G)$ (independent number  $\beta (G)$) is the minimum (maximum) cardinality among all maximal independent sets of  $G$. Haviland  (1995) conjectured that any connected regular graph  $G$ of order  $n$ and degree $\delta \le \frac{1}{2}{n}$ satisfies $i(G)\le \lceil \frac{2n}{3\delta }\rceil \frac{1}{2}{\delta }$. For $1\le k\le l\le m$, the subset graph $S_{m}(k,l)$ is the bipartite graph whose vertices are the  $k$- and $l$-subsets of an $m$  element ground set where two vertices are adjacent if and only if one subset is contained in the other. In this paper, we give a sharp upper bound for $i(S_{m}(k,l))$ and prove that if $k+l=m$ then Haviland’s conjecture holds for the subset graph $S_{m}(k,l)$. Furthermore, we give the exact value of $\beta (S_{m}(k,l))$. (English) | 
| Keyword:
             | 
independent domination number | 
| Keyword:
             | 
independent number | 
| Keyword:
             | 
subset graph | 
| MSC:
             | 
05C35 | 
| MSC:
             | 
05C69 | 
| idZBL:
             | 
Zbl 1081.05082 | 
| idMR:
             | 
MR2137158 | 
| . | 
| Date available:
             | 
2009-09-24T11:25:10Z | 
| Last updated:
             | 
2020-07-03 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/127998 | 
| . | 
| Reference:
             | 
[1] E. J.  Cockayne and S. T. Hedetniemi: Independence graphs.Proc. 5th Southeast Conf. Comb. Graph Theor. Comput, Utilitas Math., Boca Raton, 1974, pp. 471–491. MR 0357174 | 
| Reference:
             | 
[2] O.  Favaron: Two relations between the parameters of independence and irredundance.Discrete Math. 70 (1988), 17–20. MR 0943719, 10.1016/0012-365X(88)90076-3 | 
| Reference:
             | 
[3] J.  Haviland: On minimum maximal independent sets of a graph.Discrete Math. 94 (1991), 95–101. Zbl 0758.05061, MR 1139586, 10.1016/0012-365X(91)90318-V | 
| Reference:
             | 
[4] J.  Haviland: Independent domination in regular graphs.Discrete Math. 143 (1995), 275–280. Zbl 0838.05065, MR 1344759, 10.1016/0012-365X(94)00022-B | 
| Reference:
             | 
[5] M. A.  Henning and P. J.  Slater: Inequality relating domination parameters in cubic graphs.Discrete Math. 158 (1996), 87–98. MR 1411112, 10.1016/0012-365X(96)00025-8 | 
| Reference:
             | 
[6] E. J.  Cockayne, O.  Favaron, C.  Payan and A. G.  Thomason: Contributions to the theory of domination, independence and irredundance in graphs.Discrete Math. 33 (1981), 249–258. MR 0602041, 10.1016/0012-365X(81)90268-5 | 
| Reference:
             | 
[7] P. C. B.  Lam, W. C.  Shiu and L.  Sun: On independent domination number of regular graphs.Discrete Math. 202 (1999), 135–144. MR 1694509, 10.1016/S0012-365X(98)00350-1 | 
| . |