Previous |  Up |  Next

Article

Title: Some full descriptive characterizations of the Henstock-Kurzweil integral in the Euclidean space (English)
Author: Tuo-Yeong, Lee
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 55
Issue: 3
Year: 2005
Pages: 625-637
Summary lang: English
.
Category: math
.
Summary: Using generalized absolute continuity, we characterize additive interval functions which are indefinite Henstock-Kurzweil integrals in the Euclidean space. (English)
Keyword: generalized absolute continuity
Keyword: Henstock-Kurzweil integral
MSC: 26A39
MSC: 26B99
MSC: 28A12
idZBL: Zbl 1081.26008
idMR: MR2153087
.
Date available: 2009-09-24T11:26:04Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128007
.
Reference: [1] A. M.  Bruckner, J. B.  Bruckner and B. S.  Thomson: Real Analysis.Prentice-Hall, , 1997.
Reference: [2] Z.  Buczolich: Henstock integrable functions are Lebesgue integrable on a portion.Proc. American Math. Soc. 111 (1991), 127–129. Zbl 0732.26011, MR 1034883, 10.1090/S0002-9939-1991-1034883-6
Reference: [3] Claude-Alain  Faure: A descriptive definition of some multidimensional gauge integrals.Czechoslovak Math.  J. 45 (1995), 549–562. MR 1344520
Reference: [4] R. A.  Gordon: The Integrals of Lebesgue, Denjoy, Perron, and Henstock. Graduate Studies in Mathematics Vol. 4.AMS, Providence, 1994. MR 1288751
Reference: [5] J.  Jarník and J.  Kurzweil: Perron-type integration on $n$-dimensional intervals and its properties.Czechoslovak Math. J. 45 (1995), 79–106. MR 1314532
Reference: [6] W. B.  Jurkat and R. W.  Knizia: A characterization of multi-dimensional Perron integrals and the fundamental theorem.Canad.  J. Math. 43 (1991), 526–539. MR 1118008, 10.4153/CJM-1991-032-8
Reference: [7] J.  Kurzweil and J.  Jarník: Equiintegrability and controlled convergence of Perron-type integrable functions.Real Anal. Exchange 17 (1991/92), 110–139. MR 1147361
Reference: [8] J.  Kurzweil and J.  Jarník: Differentability and integrability in $n$  dimensions with respect to $\alpha $-regular intervals.Results Math. 21 (1992), 138–151. MR 1146639, 10.1007/BF03323075
Reference: [9] Lee Peng Yee and Ng Wee Leng: The Radon-Nikodým theorem for the Henstock integral in Euclidean space.Real Anal. Exchange 22 (1996/97), 677–687. MR 1460980
Reference: [10] Lee Peng Yee and Rudolf Výborný: The integral, an easy approach after Kurzweil and Henstock.Australian Mathematical Society Lecture Series  14, Cambridge University Press, Cambridge, 2000. MR 1756319
Reference: [11] Lee Tuo Yeong, Chew Tuan Seng and Lee Peng Yee: On Henstock integrability in Euclidean spaces.Real Anal. Exchange 22 (1996/97), 382–389. MR 1433623
Reference: [12] Lee Tuo Yeong: A full characterization of multipliers for the strong $\rho $-integral in the Euclidean space.Czechoslovak Math.  J. 54 (2004), 657–674. MR 2086723, 10.1007/s10587-004-6415-7
Reference: [13] Lee Tuo Yeong: The sharp Riesz-type definition for the Henstock-Kurzweil integral.Real Anal. Exchange 28 (2002/2003), 55–70. MR 1973968
Reference: [14] Lee Tuo Yeong: A full descriptive definition of the Henstock-Kurzweil integral in the Euclidean space.Proc. London Math. Soc. 87 (2003), 677–700. Zbl 1047.26006, MR 2005879
Reference: [15] Lee Tuo Yeong: Some full characterizations of the strong McShane integral.Math. Bohem. 129 (2004), 305–312. Zbl 1080.26006, MR 2092716
Reference: [16] Lu Jitan and Lee Peng Yee: The primitives of Henstock integrable functions in Euclidean space.Bull. London Math. Soc. 31 (1999), 173–180. MR 1664188, 10.1112/S0024609398005347
Reference: [17] S.  Saks: Theory of the Integral, 2nd edition.Stechert & Co., New York, 1964. MR 0167578
.

Files

Files Size Format View
CzechMathJ_55-2005-3_5.pdf 359.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo