Title:
|
Some full descriptive characterizations of the Henstock-Kurzweil integral in the Euclidean space (English) |
Author:
|
Tuo-Yeong, Lee |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
55 |
Issue:
|
3 |
Year:
|
2005 |
Pages:
|
625-637 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Using generalized absolute continuity, we characterize additive interval functions which are indefinite Henstock-Kurzweil integrals in the Euclidean space. (English) |
Keyword:
|
generalized absolute continuity |
Keyword:
|
Henstock-Kurzweil integral |
MSC:
|
26A39 |
MSC:
|
26B99 |
MSC:
|
28A12 |
idZBL:
|
Zbl 1081.26008 |
idMR:
|
MR2153087 |
. |
Date available:
|
2009-09-24T11:26:04Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/128007 |
. |
Reference:
|
[1] A. M. Bruckner, J. B. Bruckner and B. S. Thomson: Real Analysis.Prentice-Hall, , 1997. |
Reference:
|
[2] Z. Buczolich: Henstock integrable functions are Lebesgue integrable on a portion.Proc. American Math. Soc. 111 (1991), 127–129. Zbl 0732.26011, MR 1034883, 10.1090/S0002-9939-1991-1034883-6 |
Reference:
|
[3] Claude-Alain Faure: A descriptive definition of some multidimensional gauge integrals.Czechoslovak Math. J. 45 (1995), 549–562. MR 1344520 |
Reference:
|
[4] R. A. Gordon: The Integrals of Lebesgue, Denjoy, Perron, and Henstock. Graduate Studies in Mathematics Vol. 4.AMS, Providence, 1994. MR 1288751 |
Reference:
|
[5] J. Jarník and J. Kurzweil: Perron-type integration on $n$-dimensional intervals and its properties.Czechoslovak Math. J. 45 (1995), 79–106. MR 1314532 |
Reference:
|
[6] W. B. Jurkat and R. W. Knizia: A characterization of multi-dimensional Perron integrals and the fundamental theorem.Canad. J. Math. 43 (1991), 526–539. MR 1118008, 10.4153/CJM-1991-032-8 |
Reference:
|
[7] J. Kurzweil and J. Jarník: Equiintegrability and controlled convergence of Perron-type integrable functions.Real Anal. Exchange 17 (1991/92), 110–139. MR 1147361 |
Reference:
|
[8] J. Kurzweil and J. Jarník: Differentability and integrability in $n$ dimensions with respect to $\alpha $-regular intervals.Results Math. 21 (1992), 138–151. MR 1146639, 10.1007/BF03323075 |
Reference:
|
[9] Lee Peng Yee and Ng Wee Leng: The Radon-Nikodým theorem for the Henstock integral in Euclidean space.Real Anal. Exchange 22 (1996/97), 677–687. MR 1460980 |
Reference:
|
[10] Lee Peng Yee and Rudolf Výborný: The integral, an easy approach after Kurzweil and Henstock.Australian Mathematical Society Lecture Series 14, Cambridge University Press, Cambridge, 2000. MR 1756319 |
Reference:
|
[11] Lee Tuo Yeong, Chew Tuan Seng and Lee Peng Yee: On Henstock integrability in Euclidean spaces.Real Anal. Exchange 22 (1996/97), 382–389. MR 1433623 |
Reference:
|
[12] Lee Tuo Yeong: A full characterization of multipliers for the strong $\rho $-integral in the Euclidean space.Czechoslovak Math. J. 54 (2004), 657–674. MR 2086723, 10.1007/s10587-004-6415-7 |
Reference:
|
[13] Lee Tuo Yeong: The sharp Riesz-type definition for the Henstock-Kurzweil integral.Real Anal. Exchange 28 (2002/2003), 55–70. MR 1973968 |
Reference:
|
[14] Lee Tuo Yeong: A full descriptive definition of the Henstock-Kurzweil integral in the Euclidean space.Proc. London Math. Soc. 87 (2003), 677–700. Zbl 1047.26006, MR 2005879 |
Reference:
|
[15] Lee Tuo Yeong: Some full characterizations of the strong McShane integral.Math. Bohem. 129 (2004), 305–312. Zbl 1080.26006, MR 2092716 |
Reference:
|
[16] Lu Jitan and Lee Peng Yee: The primitives of Henstock integrable functions in Euclidean space.Bull. London Math. Soc. 31 (1999), 173–180. MR 1664188, 10.1112/S0024609398005347 |
Reference:
|
[17] S. Saks: Theory of the Integral, 2nd edition.Stechert & Co., New York, 1964. MR 0167578 |
. |