| Title: | The method of upper and lower solutions for a Lidstone boundary value problem (English) | 
| Author: | Guo, Yanping | 
| Author: | Gao, Ying | 
| Language: | English | 
| Journal: | Czechoslovak Mathematical Journal | 
| ISSN: | 0011-4642 (print) | 
| ISSN: | 1572-9141 (online) | 
| Volume: | 55 | 
| Issue: | 3 | 
| Year: | 2005 | 
| Pages: | 639-652 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Summary: | In this paper we develop the monotone method in the presence of upper and lower solutions for the  $2$nd order Lidstone boundary value problem \[ u^{(2n)}(t)=f(t,u(t),u^{\prime \prime }(t),\dots ,u^{(2(n-1))}(t)),\quad 0<t<1, u^{(2i)}(0)=u^{(2i)}(1)=0,\quad 0\le i\le n-1, \] where $f\:[0,1]\times \mathbb{R}^{n}\rightarrow \mathbb{R}$ is continuous. We obtain sufficient conditions on  $f$ to guarantee the existence of solutions between a lower solution and an upper solution for the higher order boundary value problem. (English) | 
| Keyword: | $n$-parameter eigenvalue problem | 
| Keyword: | Lidstone boundary value problem | 
| Keyword: | lower solution | 
| Keyword: | upper solution | 
| MSC: | 34B15 | 
| idZBL: | Zbl 1081.34019 | 
| idMR: | MR2153088 | 
| . | 
| Date available: | 2009-09-24T11:26:11Z | 
| Last updated: | 2020-07-03 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/128008 | 
| . | 
| Reference: | [1] A.  R.  Aftabizadeh: Existence and uniqueness theorems for fourth-order boundary value problems.J.  Math. Anal. Appl. 116 (1986), 415–426. Zbl 0634.34009, MR 0842808, 10.1016/S0022-247X(86)80006-3 | 
| Reference: | [2] C. De Coster, C.  Fabry and F.  Munyamarere: Nonresonance conditions for fourth-order nonlinear boundary problems.Internat. J.  Math. Sci. 17 (1994), 725–740. MR 1298797, 10.1155/S0161171294001031 | 
| Reference: | [3] M. A. Del Pino and R. F.  Manasevich: Existence for a fourth-order boundary value problem under a two parameter nonresonance condition.Proc. Amer. Math. Soc. 112 (1991), 81–86. MR 1043407, 10.2307/2048482 | 
| Reference: | [4] C. P.  Gupta: Existence and uniqueness theorem for a bending of an elastic beam equation.Appl. Anal. 26 (1988), 289–304. MR 0922976, 10.1080/00036818808839715 | 
| Reference: | [5] R. A.  Usmani: A uniqueness theorem for a boundary value problem.Proc. Amer. Math. Soc. 77 (1979), 327–335. Zbl 0424.34019, MR 0545591, 10.1090/S0002-9939-1979-0545591-4 | 
| Reference: | [6] R.  Agarwal: On fourth-order boundary value problems arising in beam analysis.Differential Integral Equations 2 (1989), 91–110. Zbl 0715.34032, MR 0960017 | 
| Reference: | [7] A.  Cabada: The method of lower and upper solutions for second, third, fourth and higher order boundary value problems.J.  Math. Anal. Appl. 185 (1994), 302–320. Zbl 0807.34023, MR 1283059, 10.1006/jmaa.1994.1250 | 
| Reference: | [8] C.  De Coster and L.  Sanchez: Upper and lower solutions, Ambrosetti-Prodi problem and positive solutions for fourth-order O. D. E.Riv. Mat. Pura. Appl. 14 (1994), 1129–1138. MR 1275354 | 
| Reference: | [9] P.  Korman: A maximum principle for fourth-order ordinary differential equations.Appl. Anal. 33 (1989), 267–273. Zbl 0681.34016, MR 1030113, 10.1080/00036818908839878 | 
| Reference: | [10] J.  Schröder: Fourth-order two-point boundary value problems.Nonlinear Anal. 8 (1984), 107–114. 10.1016/0362-546X(84)90063-4 | 
| Reference: | [11] Zhanbing Bai: The method of lower and upper solutions for a bending of an elastic beam equation.J.  Math. Anal. Appl. 248 (2000), 195–402. MR 1772591, 10.1006/jmaa.2000.6887 | 
| Reference: | [12] R. Y.  Ma, J. H. Zhang and S. M.  Fu: The method of lower and upper solutions for fourth-order two-point boundary value problems.J.  Math. Anal. Appl. 215 (1997), 415–422. MR 1490759, 10.1006/jmaa.1997.5639 | 
| Reference: | [13] J. M.  Davis and J.  Henderson: Triple positive symmetric solutions for a Lidstone boundary value problem.Differential Equations Dynam. Systems 7 (1999), 321–330. MR 1861076 | 
| Reference: | [14] J. M.  Davis, P. W.  Eloe and J.  Henderson: Triple positive solutions and dependence on higher order derivatives.J.  Math. Anal. Appl. 237 (1999), 710–720. MR 1710319, 10.1006/jmaa.1999.6500 | 
| Reference: | [15] J. M.  Davis, J.  Henderson and P. J. Y.  Wong: General Lidstone problems: multiplicity and symmetry of solutions.J. Math. Anal. Appl. 251 (2000), 527–548. MR 1794756, 10.1006/jmaa.2000.7028 | 
| Reference: | [16] D. Gilbarg and N. S.  Trudinger: Elliptic Partial Differential Equations of Second Order.Springer-Verlag, New York, 1977. MR 0473443 | 
| . |