Previous |  Up |  Next

Article

Title: The method of upper and lower solutions for a Lidstone boundary value problem (English)
Author: Guo, Yanping
Author: Gao, Ying
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 55
Issue: 3
Year: 2005
Pages: 639-652
Summary lang: English
.
Category: math
.
Summary: In this paper we develop the monotone method in the presence of upper and lower solutions for the $2$nd order Lidstone boundary value problem \[ u^{(2n)}(t)=f(t,u(t),u^{\prime \prime }(t),\dots ,u^{(2(n-1))}(t)),\quad 0<t<1, u^{(2i)}(0)=u^{(2i)}(1)=0,\quad 0\le i\le n-1, \] where $f\:[0,1]\times \mathbb{R}^{n}\rightarrow \mathbb{R}$ is continuous. We obtain sufficient conditions on $f$ to guarantee the existence of solutions between a lower solution and an upper solution for the higher order boundary value problem. (English)
Keyword: $n$-parameter eigenvalue problem
Keyword: Lidstone boundary value problem
Keyword: lower solution
Keyword: upper solution
MSC: 34B15
idZBL: Zbl 1081.34019
idMR: MR2153088
.
Date available: 2009-09-24T11:26:11Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128008
.
Reference: [1] A.  R.  Aftabizadeh: Existence and uniqueness theorems for fourth-order boundary value problems.J.  Math. Anal. Appl. 116 (1986), 415–426. Zbl 0634.34009, MR 0842808, 10.1016/S0022-247X(86)80006-3
Reference: [2] C. De Coster, C.  Fabry and F.  Munyamarere: Nonresonance conditions for fourth-order nonlinear boundary problems.Internat. J.  Math. Sci. 17 (1994), 725–740. MR 1298797, 10.1155/S0161171294001031
Reference: [3] M. A. Del Pino and R. F.  Manasevich: Existence for a fourth-order boundary value problem under a two parameter nonresonance condition.Proc. Amer. Math. Soc. 112 (1991), 81–86. MR 1043407, 10.2307/2048482
Reference: [4] C. P.  Gupta: Existence and uniqueness theorem for a bending of an elastic beam equation.Appl. Anal. 26 (1988), 289–304. MR 0922976, 10.1080/00036818808839715
Reference: [5] R. A.  Usmani: A uniqueness theorem for a boundary value problem.Proc. Amer. Math. Soc. 77 (1979), 327–335. Zbl 0424.34019, MR 0545591, 10.1090/S0002-9939-1979-0545591-4
Reference: [6] R.  Agarwal: On fourth-order boundary value problems arising in beam analysis.Differential Integral Equations 2 (1989), 91–110. Zbl 0715.34032, MR 0960017
Reference: [7] A.  Cabada: The method of lower and upper solutions for second, third, fourth and higher order boundary value problems.J.  Math. Anal. Appl. 185 (1994), 302–320. Zbl 0807.34023, MR 1283059, 10.1006/jmaa.1994.1250
Reference: [8] C.  De Coster and L.  Sanchez: Upper and lower solutions, Ambrosetti-Prodi problem and positive solutions for fourth-order O. D. E.Riv. Mat. Pura. Appl. 14 (1994), 1129–1138. MR 1275354
Reference: [9] P.  Korman: A maximum principle for fourth-order ordinary differential equations.Appl. Anal. 33 (1989), 267–273. Zbl 0681.34016, MR 1030113, 10.1080/00036818908839878
Reference: [10] J.  Schröder: Fourth-order two-point boundary value problems.Nonlinear Anal. 8 (1984), 107–114. 10.1016/0362-546X(84)90063-4
Reference: [11] Zhanbing Bai: The method of lower and upper solutions for a bending of an elastic beam equation.J.  Math. Anal. Appl. 248 (2000), 195–402. MR 1772591, 10.1006/jmaa.2000.6887
Reference: [12] R. Y.  Ma, J. H. Zhang and S. M.  Fu: The method of lower and upper solutions for fourth-order two-point boundary value problems.J.  Math. Anal. Appl. 215 (1997), 415–422. MR 1490759, 10.1006/jmaa.1997.5639
Reference: [13] J. M.  Davis and J.  Henderson: Triple positive symmetric solutions for a Lidstone boundary value problem.Differential Equations Dynam. Systems 7 (1999), 321–330. MR 1861076
Reference: [14] J. M.  Davis, P. W.  Eloe and J.  Henderson: Triple positive solutions and dependence on higher order derivatives.J.  Math. Anal. Appl. 237 (1999), 710–720. MR 1710319, 10.1006/jmaa.1999.6500
Reference: [15] J. M.  Davis, J.  Henderson and P. J. Y.  Wong: General Lidstone problems: multiplicity and symmetry of solutions.J. Math. Anal. Appl. 251 (2000), 527–548. MR 1794756, 10.1006/jmaa.2000.7028
Reference: [16] D. Gilbarg and N. S.  Trudinger: Elliptic Partial Differential Equations of Second Order.Springer-Verlag, New York, 1977. MR 0473443
.

Files

Files Size Format View
CzechMathJ_55-2005-3_6.pdf 344.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo