Previous |  Up |  Next

Article

Title: On Itô-Kurzweil-Henstock integral and integration-by-part formula (English)
Author: Toh, Tin-Lam
Author: Chew, Tuan-Seng
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 55
Issue: 3
Year: 2005
Pages: 653-663
Summary lang: English
.
Category: math
.
Summary: In this paper we derive the Integration-by-Parts Formula using the generalized Riemann approach to stochastic integrals, which is called the Itô-Kurzweil-Henstock integral. (English)
Keyword: generalized Riemann approach
Keyword: stochastic integral
Keyword: integration-by-parts
MSC: 26A39
MSC: 60H05
idZBL: Zbl 1081.26005
idMR: MR2153089
.
Date available: 2009-09-24T11:26:17Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128009
.
Reference: [1] T. S. Chew, J. Y. Tay and T. L. Toh: The non-uniform Riemann approach to Itô’s integral.Real Anal. Exchange 27 (2001/2002), 495–514. MR 1922665
Reference: [2] R.  Henstock: The efficiency of convergence factors for functions of a continuous real variable.J.  London Math. Soc. 30 (1955), 273–286. Zbl 0066.09204, MR 0072968, 10.1112/jlms/s1-30.3.273
Reference: [3] R.  Henstock: Lectures on the Theory of Integration.World Scientific, Singapore, 1988. Zbl 0668.28001, MR 0963249
Reference: [4] R.  Henstock: The General Theory of Integration.Oxford Science, , 1991. Zbl 0745.26006, MR 1134656
Reference: [5] J. Kurzweil: Generalized ordinary differential equations and continuous dependence on a parameter.Czechoslovak Math. J. 7 (1957), 418–446. Zbl 0090.30002, MR 0111875
Reference: [6] E. J.  McShane: Stochastic Calculus and Stochastic Models.Academic Press, New York, 1974. Zbl 0292.60090, MR 0443084
Reference: [7] Z. R.  Pop-Stojanović: On McShane’s belated stochastic integral.SIAM J.  Appl. Math. 22 (1972), 89–92. MR 0322954, 10.1137/0122010
Reference: [8] P.  Protter: A comparison of stochastic integrals.Ann. Probability 7 (1979), 276–289. Zbl 0404.60062, MR 0525054, 10.1214/aop/1176995088
Reference: [9] P.  Protter: Stochastic Integration and Differential Equations.Springer, New York, 1990. Zbl 0694.60047, MR 1037262
Reference: [10] T. L.  Toh and T. S. Chew: A variational approach to Itô’s integral.Proceedings of  SAP’s  98, Taiwan P291-299, World Scientifc, Singapore, 1999. MR 1819215
Reference: [11] T. L.  Toh and T. S. Chew: The Riemann approach to stochastic integration using non-uniform meshes.J.  Math. Anal. Appl. 280 (2003), 133–147. MR 1972197, 10.1016/S0022-247X(03)00059-3
Reference: [12] T. L.  Toh: The Riemann approach to stochastic integration.PhD. Thesis, National University of Singapore, Singapore, 2001.
Reference: [13] J. G.  Xu and P. Y. Lee: Stochastic integrals of Itô and Henstock.Real Anal. Exchange 18 (1992/3), 352–366. MR 1228401
.

Files

Files Size Format View
CzechMathJ_55-2005-3_7.pdf 329.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo