Title:
|
$w^*$-basic sequences and reflexivity of Banach spaces (English) |
Author:
|
John, Kamil |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
55 |
Issue:
|
3 |
Year:
|
2005 |
Pages:
|
677-681 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We observe that a separable Banach space $X$ is reflexive iff each of its quotients with Schauder basis is reflexive. Similarly if $\mathcal L(X,Y)$ is not reflexive for reflexive $X$ and $Y$ then $\mathcal L(X_1, Y)$ is is not reflexive for some $X_1\subset X$, $X_1$ having a basis. (English) |
Keyword:
|
reflexive Banach space |
Keyword:
|
Schauder basis |
Keyword:
|
quotient space |
Keyword:
|
w$^*$-basic sequence |
Keyword:
|
tensor product |
MSC:
|
46B10 |
MSC:
|
46B15 |
MSC:
|
46B28 |
idZBL:
|
Zbl 1081.46017 |
idMR:
|
MR2153091 |
. |
Date available:
|
2009-09-24T11:26:30Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/128011 |
. |
Reference:
|
[1] W. J. Davis and J. Lindenstrauss: On total nonnorming subspaces.Proc. Amer. Math. Soc. 31 (1972), 109–111. MR 0288560, 10.1090/S0002-9939-1972-0288560-8 |
Reference:
|
[2] J. Diestel: Sequences and Series in Banach Spaces.Springer-Verlag, Berlin-Heidelberg-New York, 1984. MR 0737004 |
Reference:
|
[3] M. Fabian, P. Habala, P. Hájek, J. Pelant, V. Montesinos and V. Zizler: Functional Analysis and Infinite Dimensional Geometry.Canad. Math. Soc. Books in Mathematics Springer-Verlag, New York, 2001. MR 1831176 |
Reference:
|
[4] S. Heinrich: On the reflexivity of the Banach space $L(X,Y)$.Funkts. Anal. Prilozh. 8 (1974), 97–98. (Russian) MR 0342991 |
Reference:
|
[5] J. R. Holub: Reflexivity of $L(E,F)$.Proc. Amer. Math. Soc. 39 (1974), 175–177. MR 0315407 |
Reference:
|
[6] H. Jarchow: Locally Convex Spaces.Teubner-Verlag, Stuttgart, 1981. Zbl 0466.46001, MR 0632257 |
Reference:
|
[7] W. B. Johnson and H. P. Rosenthal: On w$^*$ basic sequences and their applications to the study of Banach spaces.Studia Math. 43 (1972), 77–92. MR 0310598, 10.4064/sm-43-1-77-92 |
Reference:
|
[8] J. Lindenstrauss and L. Tzafriri: Classical Banach Spaces I. Sequence Spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete 92.Springer-Verlag, Berlin-Heidelberg-Berlin, 1977. MR 0500056 |
Reference:
|
[9] J. Mujica: Reflexive spaces of homogeneous polynomials.Bull. Polish Acad. Sci. Math. 49 (2001), 211–222. Zbl 1068.46027, MR 1863260 |
Reference:
|
[10] A. Pełczyński: A note on the paper of I. Singer “Basic sequences and reflexivity of Banach spaces”.Studia Math. 21 (1962), 371–374. MR 0146636, 10.4064/sm-21-3-370-374 |
Reference:
|
[11] V. Pták: Biorthogonal systems and reflexivity of Banach spaces.Czechoslovak Math. J. 9 (1959), 319–325. MR 0110008 |
Reference:
|
[12] W. Ruckle: Reflexivity of $L(E,F)$.Proc. Am. Math. Soc. 34 (1972), 171–174. Zbl 0242.46018, MR 0291777 |
Reference:
|
[13] I. Singer: Basic sequences and reflexivity of Banach spaces.Studia Math. 21 (1962), 351–369. Zbl 0114.30903, MR 0146635, 10.4064/sm-21-3-351-369 |
. |