Title:
|
Numerical semigroups with a monotonic Apéry set (English) |
Author:
|
Rosales, J. C. |
Author:
|
García-Sánchez, P. A. |
Author:
|
García-García, J. I. |
Author:
|
Branco, M. B. |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
55 |
Issue:
|
3 |
Year:
|
2005 |
Pages:
|
755-772 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We study numerical semigroups $S$ with the property that if $m$ is the multiplicity of $S$ and $w(i)$ is the least element of $S$ congruent with $i$ modulo $m$, then $0<w(1)<\dots <w(m-1)$. The set of numerical semigroups with this property and fixed multiplicity is bijective with an affine semigroup and consequently it can be described by a finite set of parameters. Invariants like the gender, type, embedding dimension and Frobenius number are computed for several families of this kind of numerical semigroups. (English) |
Keyword:
|
numerical |
Keyword:
|
semigroups |
Keyword:
|
Apéry |
Keyword:
|
sets |
Keyword:
|
symmetric |
Keyword:
|
affine |
Keyword:
|
proportionally |
Keyword:
|
modular |
Keyword:
|
Diophantine |
Keyword:
|
inequality |
MSC:
|
11D75 |
MSC:
|
13H10 |
MSC:
|
20M14 |
idZBL:
|
Zbl 1081.20071 |
idMR:
|
MR2153099 |
. |
Date available:
|
2009-09-24T11:27:23Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/128019 |
. |
Reference:
|
[1] F. Ajili and E. Contejean: Avoiding slack variables in the solving of linear Diophantine equations and inequations. Principles and practice of constraint programming.Theoret. Comput. Sci. 173 (1997), 183–208. MR 1436701, 10.1016/S0304-3975(96)00195-8 |
Reference:
|
[2] R. Apéry: Sur les branches superlinéaires des courbes algébriques.C. R. Acad. Sci. Paris 222 (1946). MR 0017942 |
Reference:
|
[3] V. Barucci, D. E. Dobbs and M. Fontana: Maximality Properties in Numerical Semigroups and Applications to One-Dimensional Analytically Irreducible Local Domains. Memoirs of the Amer. Math. Soc. Vol. 598., , 1997. MR 1357822 |
Reference:
|
[4] J. Bertin and P. Carbonne: Semi-groupes d’entiers et application aux branches.J. Algebra 49 (1987), 81–95. MR 0568894, 10.1016/0021-8693(77)90268-X |
Reference:
|
[5] A. Brauer: On a problem of partitions.Amer. J. Math. 64 (1942), 299–312. Zbl 0061.06801, MR 0006196, 10.2307/2371684 |
Reference:
|
[6] H. Bresinsky: On prime ideals with generic zero $x_i=t^{n_i}$.Proc. Amer. Math. Soc. 47 (1975), 329–332. MR 0389912 |
Reference:
|
[7] E. Contejean and H. Devie: An efficient incremental algorithm for solving systems of linear diophantine equations.Inform. and Comput. 113 (1994), 143–172. MR 1283022, 10.1006/inco.1994.1067 |
Reference:
|
[8] C. Delorme: Sous-monoïdes d’intersection complète de $\mathbb{N}$.Ann. Scient. École Norm. Sup. 9 (1976), 145–154. MR 0407038, 10.24033/asens.1307 |
Reference:
|
[9] R. Fröberg, C. Gottlieb and R. Häggkvist: Semigroups, semigroup rings and analytically irreducible rings.Reports Dpt. of Mathematics, University of Stockholm, Vol. 1, 1986. |
Reference:
|
[10] R. Fröberg, C. Gottlieb and R. Häggkvist: On numerical semigroups.Semigroup Forum 35 (1987), 63–83. 10.1007/BF02573091 |
Reference:
|
[11] P. A. García-Sánchez and J. C. Rosales: Numerical semigroups generated by intervals.Pacific J. Math. 191 (1999), 75–83. 10.2140/pjm.1999.191.75 |
Reference:
|
[12] R. Gilmer: Commutative Semigroup Rings.The University of Chicago Press, 1984. Zbl 0566.20050, MR 0741678 |
Reference:
|
[13] J. Herzog: Generators and relations of abelian semigroups and semigroup rings.Manuscripta Math 3 (1970), 175–193. Zbl 0211.33801, MR 0269762, 10.1007/BF01273309 |
Reference:
|
[14] E. Kunz: The value-semigroup of a one-dimensional Gorenstein ring.Proc. Amer. Math. Soc. 25 (1973), 748–751. MR 0265353, 10.1090/S0002-9939-1970-0265353-7 |
Reference:
|
[15] J. L. Ramírez Alfonsín: The Diophantine Frobenius problem.Forschungsintitut für Diskrete Mathematik, Bonn, Report No.00893, 2000. |
Reference:
|
[16] J. L. Ramírez Alfonsín: The Diophantine Frobenius problem, manuscript.. |
Reference:
|
[17] J. C. Rosales: On numerical semigroups.Semigroup Forum 52 (1996), 307–318. Zbl 0853.20041, MR 1377695, 10.1007/BF02574106 |
Reference:
|
[18] J. C. Rosales: On symmetric numerical semigroups.J. Algebra 182 (1996), 422–434. Zbl 0856.20043, MR 1391591, 10.1006/jabr.1996.0178 |
Reference:
|
[19] J. C. Rosales and M. B. Branco: Numerical semigroups that can be expressed as an intersection of symmetric numerical semigroups.J. Pure Appl. Algebra 171 (2002), 303–314. MR 1904486, 10.1016/S0022-4049(01)00128-1 |
Reference:
|
[20] J. C. Rosales and P. A. García-Sánchez: Finitely Generated Commutative Monoids.Nova Science Publishers, New York, 1999. MR 1694173 |
Reference:
|
[21] J. C. Rosales, P. A. García-Sánchez, J. I. García-García and M. B. Branco: Systems of inequalities and numerical semigroups.J. London Math. Soc. 65 (2002), 611–623. MR 1895736, 10.1112/S0024610701003052 |
Reference:
|
[22] J. C. Rosales, P. A. García-Sánchez, J. I. García-García and J. M. Urbano-Blanco: Proportionally modular Diophantine inequalities.J. Number Theory 103 (2003), 281–294. MR 2020273, 10.1016/j.jnt.2003.06.002 |
Reference:
|
[23] E. S. Selmer: On a linear Diophantine problem of Frobenius.J. Reine Angew. Math. 293/294 (1977), 1–17. MR 0441855 |
Reference:
|
[24] K. Watanabe: Some examples of one dimensional Gorenstein domains.Nagoya Math. J. 49 (1973), 101–109. Zbl 0257.13024, MR 0318140, 10.1017/S0027763000015312 |
. |