Previous |  Up |  Next

Article

Title: Numerical semigroups with a monotonic Apéry set (English)
Author: Rosales, J. C.
Author: García-Sánchez, P. A.
Author: García-García, J. I.
Author: Branco, M. B.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 55
Issue: 3
Year: 2005
Pages: 755-772
Summary lang: English
.
Category: math
.
Summary: We study numerical semigroups $S$ with the property that if $m$ is the multiplicity of $S$ and $w(i)$ is the least element of $S$ congruent with $i$ modulo $m$, then $0<w(1)<\dots <w(m-1)$. The set of numerical semigroups with this property and fixed multiplicity is bijective with an affine semigroup and consequently it can be described by a finite set of parameters. Invariants like the gender, type, embedding dimension and Frobenius number are computed for several families of this kind of numerical semigroups. (English)
Keyword: numerical
Keyword: semigroups
Keyword: Apéry
Keyword: sets
Keyword: symmetric
Keyword: affine
Keyword: proportionally
Keyword: modular
Keyword: Diophantine
Keyword: inequality
MSC: 11D75
MSC: 13H10
MSC: 20M14
idZBL: Zbl 1081.20071
idMR: MR2153099
.
Date available: 2009-09-24T11:27:23Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128019
.
Reference: [1] F.  Ajili and E.  Contejean: Avoiding slack variables in the solving of linear Diophantine equations and inequations. Principles and practice of constraint programming.Theoret. Comput. Sci. 173 (1997), 183–208. MR 1436701, 10.1016/S0304-3975(96)00195-8
Reference: [2] R.  Apéry: Sur les branches superlinéaires des courbes algébriques.C. R. Acad. Sci. Paris 222 (1946). MR 0017942
Reference: [3] V.  Barucci, D. E.  Dobbs and M.  Fontana: Maximality Properties in Numerical Semigroups and Applications to One-Dimensional Analytically Irreducible Local Domains. Memoirs of the Amer. Math. Soc. Vol. 598., , 1997. MR 1357822
Reference: [4] J.  Bertin and P.  Carbonne: Semi-groupes d’entiers et application aux branches.J.  Algebra 49 (1987), 81–95. MR 0568894, 10.1016/0021-8693(77)90268-X
Reference: [5] A.  Brauer: On a problem of partitions.Amer. J.  Math. 64 (1942), 299–312. Zbl 0061.06801, MR 0006196, 10.2307/2371684
Reference: [6] H.  Bresinsky: On prime ideals with generic zero $x_i=t^{n_i}$.Proc. Amer. Math. Soc. 47 (1975), 329–332. MR 0389912
Reference: [7] E.  Contejean and H.  Devie: An efficient incremental algorithm for solving systems of linear diophantine equations.Inform. and Comput. 113 (1994), 143–172. MR 1283022, 10.1006/inco.1994.1067
Reference: [8] C.  Delorme: Sous-monoïdes d’intersection complète de  $\mathbb{N}$.Ann. Scient. École Norm. Sup. 9 (1976), 145–154. MR 0407038, 10.24033/asens.1307
Reference: [9] R.  Fröberg, C.  Gottlieb and R.  Häggkvist: Semigroups, semigroup rings and analytically irreducible rings.Reports Dpt. of Mathematics, University of Stockholm, Vol.  1, 1986.
Reference: [10] R.  Fröberg, C.  Gottlieb and R.  Häggkvist: On numerical semigroups.Semigroup Forum 35 (1987), 63–83. 10.1007/BF02573091
Reference: [11] P. A.  García-Sánchez and J. C.  Rosales: Numerical semigroups generated by intervals.Pacific J.  Math. 191 (1999), 75–83. 10.2140/pjm.1999.191.75
Reference: [12] R.  Gilmer: Commutative Semigroup Rings.The University of Chicago Press, 1984. Zbl 0566.20050, MR 0741678
Reference: [13] J.  Herzog: Generators and relations of abelian semigroups and semigroup rings.Manuscripta Math 3 (1970), 175–193. Zbl 0211.33801, MR 0269762, 10.1007/BF01273309
Reference: [14] E.  Kunz: The value-semigroup of a one-dimensional Gorenstein ring.Proc. Amer. Math. Soc. 25 (1973), 748–751. MR 0265353, 10.1090/S0002-9939-1970-0265353-7
Reference: [15] J. L.  Ramírez Alfonsín: The Diophantine Frobenius problem.Forschungsintitut für Diskrete Mathematik, Bonn, Report No.00893, 2000.
Reference: [16] J. L.  Ramírez Alfonsín: The Diophantine Frobenius problem, manuscript..
Reference: [17] J. C.  Rosales: On numerical semigroups.Semigroup Forum 52 (1996), 307–318. Zbl 0853.20041, MR 1377695, 10.1007/BF02574106
Reference: [18] J. C.  Rosales: On symmetric numerical semigroups.J.  Algebra 182 (1996), 422–434. Zbl 0856.20043, MR 1391591, 10.1006/jabr.1996.0178
Reference: [19] J. C.  Rosales and M. B.  Branco: Numerical semigroups that can be expressed as an intersection of symmetric numerical semigroups.J. Pure Appl. Algebra 171 (2002), 303–314. MR 1904486, 10.1016/S0022-4049(01)00128-1
Reference: [20] J. C.  Rosales and P. A.  García-Sánchez: Finitely Generated Commutative Monoids.Nova Science Publishers, New York, 1999. MR 1694173
Reference: [21] J. C.  Rosales, P. A.  García-Sánchez, J. I.  García-García and M. B.  Branco: Systems of inequalities and numerical semigroups.J.  London Math. Soc. 65 (2002), 611–623. MR 1895736, 10.1112/S0024610701003052
Reference: [22] J. C.  Rosales, P. A. García-Sánchez, J. I.  García-García and J. M. Urbano-Blanco: Proportionally modular Diophantine inequalities.J.  Number Theory 103 (2003), 281–294. MR 2020273, 10.1016/j.jnt.2003.06.002
Reference: [23] E. S.  Selmer: On a linear Diophantine problem of Frobenius.J.  Reine Angew. Math. 293/294 (1977), 1–17. MR 0441855
Reference: [24] K.  Watanabe: Some examples of one dimensional Gorenstein domains.Nagoya Math.  J. 49 (1973), 101–109. Zbl 0257.13024, MR 0318140, 10.1017/S0027763000015312
.

Files

Files Size Format View
CzechMathJ_55-2005-3_17.pdf 405.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo