Previous |  Up |  Next

Article

Title: Stieltjes perfect semigroups are perfect (English)
Author: Bisgaard, Torben Maack
Author: Sakakibara, Nobuhisa
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 55
Issue: 3
Year: 2005
Pages: 729-753
Summary lang: English
.
Category: math
.
Summary: An abelian $*$-semigroup $S$ is perfect (resp. Stieltjes perfect) if every positive definite (resp. completely so) function on $S$ admits a unique disintegration as an integral of hermitian multiplicative functions (resp. nonnegative such). We prove that every Stieltjes perfect semigroup is perfect. The converse has been known for semigroups with neutral element, but is here shown to be not true in general. We prove that an abelian $*$-semigroup $S$ is perfect if for each $s \in S$ there exist $t\in S$ and $m,n\in \mathbb{N}_0$ such that $m+n\ge 2$ and $s+s^ *=s^*+mt+nt^*$. This was known only with $s=mt+nt^*$ instead. The equality cannot be replaced by $s+s^*+s=s+s^*+mt+nt^*$ in general, but for semigroups with neutral element it can be replaced by $s+p(s+s^*)=p(s+s^*)+ mt+nt^*$ for arbitrary $p\in \mathbb{N}$ (allowed to depend on $s$). (English)
Keyword: perfect
Keyword: Stieltjes perfect
Keyword: moment
Keyword: positive definite
Keyword: conelike
Keyword: semi-$*$-divisible
Keyword: $*$-semigroup
MSC: 43A35
MSC: 44A60
idZBL: Zbl 1081.43002
idMR: MR2153098
.
Date available: 2009-09-24T11:27:16Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128018
.
Reference: [1] N. I.  Akhiezer: The Classical Moment Problem and Some Related Questions in Analysis.Oliver & Boyd, Edinburgh, 1965. Zbl 0135.33803, MR 0184042
Reference: [2] C.  Berg: Fonctions définies négatives et majoration de Schur.In: Théorie du Potentiel (Orsay, 1983), Lecture Notes in Mathematics Vol. 1096, G. Mokobodzki, D.  Pinchon (eds.), Springer-Verlag, Berlin, 1984, pp. 69–89. Zbl 0554.43002, MR 0890354
Reference: [3] C.  Berg, J. P. R.  Christensen and C. U.  Jensen: A remark on the multidimensional moment problem.Math. Ann. 243 (1979), 163–169. MR 0543726, 10.1007/BF01420423
Reference: [4] C.  Berg, J. P. R.  Christensen and P.  Ressel: Harmonic Analysis on Semigroups. Theory of Positive Definite and Related Functions.Springer-Verlag, Berlin, 1984. MR 0747302
Reference: [5] T. M.  Bisgaard: Characterization of perfect involution groups.Math. Scand. 65 (1989), 245–258. Zbl 0739.43007, MR 1050867, 10.7146/math.scand.a-12281
Reference: [6] T. M. Bisgaard: Separation by characters or positive definite functions.Semigroup Forum 53 (1996), 317–320. Zbl 0867.43002, MR 1406777, 10.1007/BF02574146
Reference: [7] T. M.  Bisgaard: Extensions of Hamburger’s Theorem.Semigroup Forum 57 (1998), 397–429. Zbl 0923.47010, MR 1640879, 10.1007/PL00005988
Reference: [8] T. M.  Bisgaard: On perfect semigroups.Acta Math. Hungar. 79 (1998), 269–294. Zbl 0909.20047, MR 1619811, 10.1023/A:1006511012031
Reference: [9] T. M.  Bisgaard: Semiperfect countable $\mathbb{C}$-separative $C$-finite semigroups.Collect. Math. 52 (2001), 55–73. MR 1833086
Reference: [10] T. M.  Bisgaard: Factoring of positive definite functions on semigroups.Semigroup Forum 64 (2002), 243–264. Zbl 1015.43005, MR 1876858, 10.1007/s002330010062
Reference: [11] T. M.  Bisgaard: A note on factoring of positive definite functions on semigroups.Math. Nachr. 236 (2002), 31–46. Zbl 1015.43005, MR 1888556, 10.1002/1522-2616(200203)236:1<31::AID-MANA31>3.0.CO;2-D
Reference: [12] T. M.  Bisgaard: Extensions of Herglotz’ Theorem.Comm. Math. Univ. Sct. Pauli 51 (2002), 195–215. Zbl 1037.43006, MR 1955171
Reference: [13] T. M.  Bisgaard: On the Stieltjes moment problem on semigroups.Czechoslovak Math. J. 52(127) (2002), 155–196. Zbl 1021.43003, MR 1885464, 10.1023/A:1021783707324
Reference: [14] T. M.  Bisgaard: Semiperfect finitely generated abelian semigroups without involution.Math. Scand. 91 (2002), 285–319. Zbl 1017.43004, MR 1931575, 10.7146/math.scand.a-14391
Reference: [15] T. M.  Bisgaard and P.  Ressel: Unique disintegration of arbitrary positive definite functions on $*$-divisible semigroups.Math.  Z. 200 (1989), 511–525. MR 0987584
Reference: [16] T. M.  Bisgaard and N.  Sakakibara: A reduction of the problem of characterizing perfect semigroups.Math. Scand. 91 (2002), 55–66. MR 1917681, 10.7146/math.scand.a-14378
Reference: [17] A. H.  Clifford and G. B.  Preston: The Algebraic Theory of Semigroups, Vol. I.Amer. Math. Soc., Providence, 1961. MR 0132791
Reference: [18] P. R.  Halmos: Measure Theory.Springer-Verlag, Berlin, 1974. Zbl 0283.28001
Reference: [19] H. L.  Hamburger: Über eine Erweiterung des Stieltjesschen Momentenproblems.Math. Ann. 81 (1920), 235–319. MR 1511966, 10.1007/BF01564869
Reference: [20] G. Herglotz: Über Potenzreihen mit positivem, reellen Teil im Einheitskreis.Ber. Verh. Königl. Sächs. Ges. Wiss. Leipzig, Math.-Phys.  Kl. 63 (1911), 501–511.
Reference: [21] K. Nishio and N.  Sakakibara: Perfectness of conelike $*$-semigroups in  $\mathbb{Q}^k$.Math. Nachr. 216 (2000), 155–167. MR 1774907, 10.1002/1522-2616(200008)216:1<155::AID-MANA155>3.0.CO;2-X
Reference: [22] A. L. T.  Paterson: An integral representation of positive definite functions on a Clifford semigroup.Math. Ann. 234 (1978), 125–138. Zbl 0358.43003, MR 0481933, 10.1007/BF01420963
Reference: [23] A.  Powzner: Über positive Funktionen auf einer Abelschen Gruppe.C. R.  (Doklady) Akad. Sci. URSS  (N.S.) 28 (1940), 294–295. MR 0003459
Reference: [24] D. A.  Raikov: Positive definite functions on commutative groups with an invariant measure.C. R. (Doklady) Akad. Sci. URSS  (N.S.) 28 (1940), 296–300. MR 0003460
Reference: [25] N.  Sakakibara: Perfectness and semiperfectness of abelian $* $-semigroups without zero.Hokkaido Math. J. 24 (1995), 113–125. MR 1319033, 10.14492/hokmj/1380892538
Reference: [26] K.  Schmüdgen: An example of a positive polynomial which is not a sum of squares of polynomials. A positive, but not strongly positive functional.Math. Nachr. 88 (1979), 385–390. MR 0543417, 10.1002/mana.19790880130
Reference: [27] J.  A.  Shohat and J. D.  Tamarkin: The Problem of Moments.Amer. Math. Soc., Providence, 1943. MR 0008438
Reference: [28] T. J.  Stieltjes: Recherches sur les fractions continues.Ann. Fac. Sci. Toulouse 8 (1894), 1–122. MR 1508159, 10.5802/afst.108
Reference: [29] R. J.  Warne and L. K. Williams: Characters on inverse semigroups.Czechoslovak Math. J. 11 (1961), 150–154. MR 0130315
Reference: [30] A.  Weil: L’intégration dans les groupes topologiques et ses applications.Actual. Sci. Ind., No. 869 and 1145, Hermann et Cie., Paris (1940 and 1951). MR 0005741
.

Files

Files Size Format View
CzechMathJ_55-2005-3_16.pdf 488.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo