Title:
|
Remarks on spectral radius and Laplacian eigenvalues of a graph (English) |
Author:
|
Zhou, Bo |
Author:
|
Cho, Han Hyuk |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
55 |
Issue:
|
3 |
Year:
|
2005 |
Pages:
|
781-790 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $G$ be a graph with $n$ vertices, $m$ edges and a vertex degree sequence $(d_1, d_2, \dots , d_n)$, where $d_1 \ge d_2 \ge \dots \ge d_n$. The spectral radius and the largest Laplacian eigenvalue are denoted by $\rho (G)$ and $\mu (G)$, respectively. We determine the graphs with \[ \rho (G) = \frac{d_n - 1}{2} + \sqrt{2m - nd_n + \frac{(d_n +1)^2}{4}} \] and the graphs with $d_n\ge 1$ and \[ \mu (G) = d_n + \frac{1}{2} + \sqrt {\sum _{i=1}^n d_i (d_i-d_n) + \Bigl (d_n - \frac{1}{2} \Bigr )^2}. \] We also present some sharp lower bounds for the Laplacian eigenvalues of a connected graph. (English) |
Keyword:
|
spectral radius |
Keyword:
|
Laplacian eigenvalue |
Keyword:
|
strongly regular graph |
MSC:
|
05C07 |
MSC:
|
05C50 |
MSC:
|
05C75 |
idZBL:
|
Zbl 1081.05068 |
idMR:
|
MR2153101 |
. |
Date available:
|
2009-09-24T11:27:36Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/128021 |
. |
Reference:
|
[1] R. A. Brualdi: From the Editor in Chief.Linear Algebra Appl. 360 (2003), 279–283. MR 1728495 |
Reference:
|
[2] D. M. Cvetkovič, M. Doob and H. Sachs: Spectra of Graphs.DVW, Berlin, 1980. MR 0572262 |
Reference:
|
[3] M. Fiedler: Algebraic conectivity of graphs.Czechoslovak Math. J. 23 (1973), 298–305. MR 0318007 |
Reference:
|
[4] R. Grone and R. Merris: The Laplacian spectrum of a graph (II).SIAM J. Discrete Math. 7 (1994), 221–229. MR 1271994, 10.1137/S0895480191222653 |
Reference:
|
[5] Y. Hong: Bounds of eigenvalues of graphs.Discrete Math. 123 (1993), 65–74. Zbl 0788.05067, MR 1256082, 10.1016/0012-365X(93)90007-G |
Reference:
|
[6] Y. Hong, J. Shu and K. Fang: A sharp upper bound of the spectral radius of graphs.J. Combinatorial Theory Ser. B 81 (2001), 177–183. MR 1814902, 10.1006/jctb.2000.1997 |
Reference:
|
[7] R. Merris: Laplacian matrices of graphs: a survey.Linear Algebra Appl. 197-198 (1994), 143–176. Zbl 0802.05053, MR 1275613 |
Reference:
|
[8] R. Stanley: A bound on the spectral radius of graphs with $e$ edges.Linear Algebra Appl. 87 (1987), 267–269. Zbl 0617.05045, MR 0878683, 10.1016/0024-3795(87)90172-8 |
Reference:
|
[9] J. Shu, Y. Hong and W. Kai: A sharp upper bound on the largest eigenvalue of the Laplacian matrix of a graph.Linear Algebra Appl. 347 (2002), 123–129. MR 1899886 |
Reference:
|
[10] V. Nikiforov: Some inequalities for the largest eigenvalue of a graph.Combin. Probab. Comput. 11 (2002), 179–189. Zbl 1005.05029, MR 1888908, 10.1017/S0963548301004928 |
Reference:
|
[11] X. Zhang and J. Li: On the $k$-th largest eigenvalue of the Laplacian matrix of a graph.Acta Mathematicae Applicatae Sinica 17 (2001), 183–190. MR 1877099, 10.1007/BF02669571 |
. |