Previous |  Up |  Next

Article

Title: Remarks on spectral radius and Laplacian eigenvalues of a graph (English)
Author: Zhou, Bo
Author: Cho, Han Hyuk
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 55
Issue: 3
Year: 2005
Pages: 781-790
Summary lang: English
.
Category: math
.
Summary: Let $G$ be a graph with $n$ vertices, $m$ edges and a vertex degree sequence $(d_1, d_2, \dots , d_n)$, where $d_1 \ge d_2 \ge \dots \ge d_n$. The spectral radius and the largest Laplacian eigenvalue are denoted by $\rho (G)$ and $\mu (G)$, respectively. We determine the graphs with \[ \rho (G) = \frac{d_n - 1}{2} + \sqrt{2m - nd_n + \frac{(d_n +1)^2}{4}} \] and the graphs with $d_n\ge 1$ and \[ \mu (G) = d_n + \frac{1}{2} + \sqrt {\sum _{i=1}^n d_i (d_i-d_n) + \Bigl (d_n - \frac{1}{2} \Bigr )^2}. \] We also present some sharp lower bounds for the Laplacian eigenvalues of a connected graph. (English)
Keyword: spectral radius
Keyword: Laplacian eigenvalue
Keyword: strongly regular graph
MSC: 05C07
MSC: 05C50
MSC: 05C75
idZBL: Zbl 1081.05068
idMR: MR2153101
.
Date available: 2009-09-24T11:27:36Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128021
.
Reference: [1] R. A. Brualdi: From the Editor in Chief.Linear Algebra Appl. 360 (2003), 279–283. MR 1728495
Reference: [2] D.  M.  Cvetkovič, M.  Doob and H.  Sachs: Spectra of Graphs.DVW, Berlin, 1980. MR 0572262
Reference: [3] M.  Fiedler: Algebraic conectivity of graphs.Czechoslovak Math.  J. 23 (1973), 298–305. MR 0318007
Reference: [4] R.  Grone and R.  Merris: The Laplacian spectrum of a graph  (II).SIAM J.  Discrete Math. 7 (1994), 221–229. MR 1271994, 10.1137/S0895480191222653
Reference: [5] Y.  Hong: Bounds of eigenvalues of graphs.Discrete Math. 123 (1993), 65–74. Zbl 0788.05067, MR 1256082, 10.1016/0012-365X(93)90007-G
Reference: [6] Y.  Hong, J.  Shu and K.  Fang: A sharp upper bound of the spectral radius of graphs.J.  Combinatorial Theory Ser.  B 81 (2001), 177–183. MR 1814902, 10.1006/jctb.2000.1997
Reference: [7] R.  Merris: Laplacian matrices of graphs: a survey.Linear Algebra Appl. 197-198 (1994), 143–176. Zbl 0802.05053, MR 1275613
Reference: [8] R.  Stanley: A bound on the spectral radius of graphs with $e$  edges.Linear Algebra Appl. 87 (1987), 267–269. Zbl 0617.05045, MR 0878683, 10.1016/0024-3795(87)90172-8
Reference: [9] J.  Shu, Y.  Hong and W.  Kai: A sharp upper bound on the largest eigenvalue of the Laplacian matrix of a graph.Linear Algebra Appl. 347 (2002), 123–129. MR 1899886
Reference: [10] V.  Nikiforov: Some inequalities for the largest eigenvalue of a graph.Combin. Probab. Comput. 11 (2002), 179–189. Zbl 1005.05029, MR 1888908, 10.1017/S0963548301004928
Reference: [11] X.  Zhang and J.  Li: On the $k$-th largest eigenvalue of the Laplacian matrix of a graph.Acta Mathematicae Applicatae Sinica 17 (2001), 183–190. MR 1877099, 10.1007/BF02669571
.

Files

Files Size Format View
CzechMathJ_55-2005-3_19.pdf 319.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo