Previous |  Up |  Next

Article

Title: A class of statistical and $\sigma$-conservative matrices (English)
Author: Çoşkun, Hüsamettin
Author: Çakan, Celal
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 55
Issue: 3
Year: 2005
Pages: 791-801
Summary lang: English
.
Category: math
.
Summary: In [5] and [10], statistical-conservative and $\sigma $-conservative matrices were characterized. In this note we have determined a class of statistical and $\sigma $-conservative matrices studying some inequalities which are analogous to Knopp’s Core Theorem. (English)
Keyword: statistical convergence
Keyword: invariant means
Keyword: core theorems
Keyword: matrix transformations
MSC: 40C05
MSC: 40G99
MSC: 40J05
MSC: 46A45
idZBL: Zbl 1081.40003
idMR: MR2153102
.
Date available: 2009-09-24T11:27:43Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128022
.
Reference: [1] H. Çoşkun, C. Çakan and Mursaleen: On the statistical and $\sigma $-cores.Studia Math. 153 (2003), 29–35. MR 1949047
Reference: [2] G.  Das: Sublinear functionals and a class of conservative matrices.Bull. Inst. Math. Acad. Sinica 15 (1987), 89–106. Zbl 0632.46008, MR 0947779
Reference: [3] J. A.  Fridy and C.  Orhan: Statistical limit superior and limit inferior.Proc. Amer. Math. Soc. 125 (1997), 3625–3631. MR 1416085, 10.1090/S0002-9939-97-04000-8
Reference: [4] J.  Li and J. A.  Fridy: Matrix transformations of statistical cores of complex sequences.Analysis 20 (2000), 15–34. MR 1757066, 10.1524/anly.2000.20.1.15
Reference: [5] E.  Kolk: Matrix maps into the space of statistically convergent bounded sequences.Proc. Estonian Acad. Sci. Phys. Math. 45 (1996), 187–192. Zbl 0865.40001, MR 1426169
Reference: [6] I. J.  Maddox: Elements of Functional Analysis.Cambridge University Press, Cambridge, 1970. Zbl 0193.08601, MR 0390692
Reference: [7] S. L.  Mishra, B.  Satapathy and N.  Rath: Invariant means and $\sigma $-core.J.  Indian Math. Soc. 60 (1984), 151–158. MR 1292133
Reference: [8] Mursaleen: On some new invariant matrix methods of summability.Quart. J.  Math. Oxford Ser.  2 34 (1983), 77–86. Zbl 0539.40006, MR 0688425, 10.1093/qmath/34.1.77
Reference: [9] R.  Raimi: Invariant means and invariant matrix methods of summability.Duke Math.  J. 30 (1963), 81–94. Zbl 0125.03201, MR 0154005, 10.1215/S0012-7094-63-03009-6
Reference: [10] P.  Schaefer: Infinite matrices and invariant means.Proc. Amer. Math. Soc. 36 (1972), 104–110. Zbl 0255.40003, MR 0306763, 10.1090/S0002-9939-1972-0306763-0
Reference: [11] S.  Simons: Banach limits, infinite matrices and sublinear functionals.J.  Math. Anal. Appl. 26 (1969), 640–655. Zbl 0176.46001, MR 0241957, 10.1016/0022-247X(69)90203-0
.

Files

Files Size Format View
CzechMathJ_55-2005-3_20.pdf 323.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo